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ABSTRACT 
 

In this study, we have implemented an edge-based finite element method for the numerical 

modeling of the transient electromagnetic method. We took the Helmholtz equation of the 

electric field as the governing equation for the edge-based finite element analysis. The modeling 

domain was discretized using linear tetrahedral mesh supported by Whitney-type vector basis 

functions. We inferred the equations by applying the Galerkin method. The system of equation 

was solved using a corrected version of the Bi Conjugate Gradient Stabilized Method 

(BiCGStab) algorithm to reduce the computational time. We obtained numerical solution for 

electric field in the Laplace domain; then the field was transformed into the time domain using 

the Gaver-Stehfest algorithm. Following this, the impulse response of the magnetic field was 

obtained through the Faraday law of electromagnetic induction as it is considerably more stable 

and computationally more efficient than inversion using the Fourier Transform. 3D geoelectric 

models were used to investigate the convergence of the edge-based finite element method with 

the analytic solution. The results are in good agreement with the analytical solution value for two 

resistivity contrasts in the 3D geoelectric brick model. We also compared the results of 

tetrahedral elements with the brick element in the 3D horizontal sheet and 3D conductive brick 

model. The results indicated that these two elements show very similar errors, but tetrahedral 

reflects fewer relative errors. For the low resistivity geoelectric model, numerical checks against 

the analytical solution, integral-equation method, and finite-difference time-domain solutions 

showed that the solutions would provide accurate results. 
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RESUMEN 

 

En este estudio se ha implementado un método de elementos finitos basado en bordes para el 

modelado numérico del método electromagnético transitorio. Tomamos la ecuación de Helmholtz 

del campo eléctrico como la ecuación gobernante para el análisis de elementos finitos basado en 

aristas. El dominio de modelado se discretizó utilizando una malla tetraédrica lineal con el apoyo 

de funciones de base de vector de tipo Whitney.  Se infirió las ecuaciones aplicando el método de 

Galerkin. El sistema de ecuación se resolvió utilizando una versión corregida del algoritmo del 

método estabilizado de gradiente conjugado bi (BiCGStab) para reducir el tiempo de cálculo. Se 

obtuvo una solución numérica para el campo eléctrico en el dominio de Laplace; luego, el campo 

se transformó en el dominio del tiempo utilizando el algoritmo Gaver-Stehfest. Después de esto, 

la respuesta al impulso del campo magnético se obtuvo a través de la ley de inducción 

electromagnética de Faraday, ya que es considerablemente más estable y computacionalmente 

más eficiente que la inversión utilizando la transformada de Fourier. Se utilizaron modelos 

geoeléctricos 3D para investigar la convergencia del método de elementos finitos basado en 

bordes con la solución analítica. Los resultados concuerdan bien con el valor de la solución 

analítica para dos contrastes de resistividad en el modelo de ladrillo geoeléctrico 3D. También 

comparamos los resultados de los elementos tetraédricos con el elemento de ladrillo en la hoja 

horizontal 3D y el modelo de ladrillo conductor 3D. Los resultados indicaron que estos dos 

elementos muestran errores muy similares, pero el tetraédrico refleja menos errores relativos. 

Para el modelo geoeléctrico de baja resistividad, las comprobaciones numéricas con la solución 

analítica, el método de ecuación integral y las soluciones en el dominio del tiempo de diferencias 

finitas mostraron que las soluciones proporcionarían resultados precisos. 

 

Palabras clave: Basado en aristas, Elemento finito, Método electromagnético transitorio, 

Tetraédrico. 
 

1. INTRODUCCION  
 

The transient electromagnetic method (TEM) is widely applied in many fields such as mineral exploration 

(Zhdanov 2013), hydrocarbon exploration (Li and Constable 2010), tunnel prediction (Xue et al. 2017), 

etc. Loop-source Electromagnetic Method (EM) for the frequency and time domains play an important 

role in a wide range of geophysical investigations such as oil-sands exploration (Batayneh 2001; Yang and 

Oldenburg 2012; Zhdanov et al. 2013). Since 1980, TEM has been developed and refined intensively 

(Nedlec 1980). This makes the method relatively young compared to the frequency domain and 

magnetotelluric methods (Christiansen et al. 2006). The TEM data can be acquired in any one of the 

configurations, namely Central loop, In-loop, offset loop, and coincident loop methods (Taylor et al. 1992; 

Zhang and Xiao 2001). However, in practice, the central loop and coincident loop systems have been used 

more frequently (Nabighian 1988; Nabighian and James 1991; Karmis et al. 2003).  

 

Integral-Equation Method (IEM), Finite-Difference Time-Domain method(FDTD), Finite-Volume, and 

Finite-Element (FE) Method have widely been applied for forward modeling of electromagnetic data. All 

of these numerical methods are based on either the background-anomalous field or the primary-secondary 

method. This method decomposes the total field into a background field and an anomalous field, which 

are typically evaluated by analytic and numerical methods, respectively. Compared with the IE and FDTD 

methods, complicated models such as irregular geologic bodies and surface topography can be described 

accurately by Finite Element Method (FEM) (Li and Hu 2017). In the finite-element modeling of 

electromagnetic fields, both edge and nodal elements play an important role. The difficulty in the 



 

1182 

modeling of field strengths that is caused by discontinuities in the properties of the media that can be 

overcome using edges of the elements. Edges of the elements can be used for computing electromagnetic 

fields in both homogeneous and inhomogeneous domains. The edge-based FEM adopt the vector basis 

functions defined on the center of the edges. The computation domain is usually discretized using either 

structured or unstructured meshes which employs rectangular and tetrahedral elements, respectively (Cai 

et al. 2014; Cai et al. 2017). Compared with the brick element, the tetrahedral element is preferred to 

represent complex geometry (Jin 2002). The edge-based FEM has some advantages such as imposing 

tangential boundary conditions easily (Whitney 1957; Jin 2002; Epov et al. 2007; Nam et al. 2007). 

Currently, the edge-based FEM is mainly used in numerical simulations of the TEM and magnetotelluric 

methods (Mitsuhata and Uchida 2004; Nam et al. 2007; Marinenko et al. 2009). Bossavit and Vertie 

(1982) discussed the construction of edge-based elements with tetrahedral and rectangular bricks for three-

dimensional eddy-current problems. Xiao et al. (2017) applied an edge-based finite element for modeling 

of magnetotelluric data. Xiao et al. (2017) applied an edge-based finite element for modeling of 

magnetotelluric data.  

 

In this paper, the edge-based FEM with tetrahedral elements was employed to conduct the numerical 

modelling of the TEM for the central-loop configuration. We divided the computing domain into 

homogenous tetrahedral elements and used the Whitney-type vector basis function. As the divergence of 

Whitney function is zero and its curl is nonzero, it seems ideal for representing the vector field in the 

source-free region. In this way, we can obtain the system of the large symmetrical sparse equations which 

must be solved.  

 

All the numerical methods for solving Ax = b can be divided into two broad categories, direct methods, 

and iterative methods. The iteration method is an attempt to solve a problem by finding successive 

approximations to the solution starting from an initial guess. Iterative methods are computationally more 

attractive than the direct methods particularly for large and sparse systems (Freund et al. 1992, Dreyer 

2009). There are a wide variety of iterative techniques, such as Conjugate Gradient (CG), minimum 

residual, generalized minimum residual, Bi-conjugate gradient, quasi minimal residual, conjugate gradient 

squared, Bi-conjugate Gradient Stabilized (BiCGStab) and Chebyshev iterations (Cools 2019). We used 

the Corrected Bi Conjugate Gradient Stabilized Method (CBiCGStab) for the solutions of equations with 

unsymmetric coefficient matrices. The resulting CBiCGStab algorithm would maintain the favorable 

properties of the original method while not increasing computational costs (Yang and Brent 2002). After 

solving the equation with the CBiCGstab method, we derived the Laplace transform of the solution for 

TEM soundings and used the Gaver-Stehfest algorithm to invert it numerically to the time domain 

(Stehfest 1970, Davies and Martin 1978). Abate and Valko (2004) showed that the Gaver-Stehfest method 

would be quite accurate for functions which were not discontinuous or highly oscillatory and that this 

method would be much faster than the Discrete Fourier Transform method (DFT) since the vertical 

component of the impulse response of the magnetic field and Electromotive Force (EMF) could be 

obtained from the electric field at the edges of elements in the time domain with Gaver-Stehfest method. 

 

2. FINITE ELEMENT ANALYSIS 
 

2-1. Helmholtz Equation 

 

In TEM, the current flowing in a transmitter loop sets up a magnetic field and induces an eddy current to 

flow in any good electrical conductor in the ground. These eddy currents set up a secondary magnetic field 

which can be detected by a receiver loop as time-dependent decaying voltage.  

 

We took the Helmholtz equation of the electric field as the governing equation for the finite element 

analysis. The Helmholtz equation often arises in the study of electromagnetic problems which represents 

a time-independent form of the wave equation. The total fields are decomposed into the background 
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electromagnetic fields (�̂�𝑏, �̂�𝑏) and anomaly electromagnetic fields (�̂�𝑎, �̂�𝑎) in the Laplace domain to 

avoid the source singularity problem (Cai et al. 2015): 

 

{
 �̂� = �̂�𝑎 + �̂�𝑏
�̂� = �̂�𝑎 + �̂�𝑏  

                                                                           (1)  

 

Without regard to displacement current, when no electric or magnetic abnormal body exists, we can 

calculate the Helmholtz equation in the Laplace domain using Maxwell’s equations and Eq 1, as explained 

in (Mitsuhata and Uchida 2004; Marinenko et al. 2009; Cai et al. 2015): 

 

𝛁 × 𝛁 × �̂�𝑎 + 𝜇0𝑠𝜎�̂�𝑎 + 𝜇0𝑠𝜎𝑎�̂�𝑏 = 0                                                     (2) 
 

where 𝑠 = −𝑖𝜔 and stands for the Laplace domain variable, 𝜇0 is the magnetic permeability, 𝜔 stands for 

angular frequency, �̂�𝑏 and �̂�𝑎are the background and anomaly electric fields respectively in the Laplace 

domain, 𝜎 = 𝜎𝑎 + 𝜎𝑏  is the conductivity of the geoelectric model, 𝜎𝑏 denotes the background conductivity 

without the electric or magnetic abnormal body and 𝜎𝑎  stands for the abnormal conductivity.  

 

2-2. Galerkin Method 

 

Taking equation (2) as the governing equation of the finite element analysis, we infer the finite element 

equations by applying the Galerkin method (Jin 2002; Li et al. 2017). A popular and useful variation of 

the method of weighted residuals is the Galerkin method. (Li et al. 2017). Suppose a residual vector r for 

equation (2) is 

   

𝐫 = 𝛁 × 𝛁 × �̂�𝑎 + 𝜇0𝑠𝜎�̂�𝑎 + 𝜇0𝑠𝜎𝑎�̂�𝑏.                                             (3) 

 

Then, based on the Galerkin method, the following is obtained in each element (Cai et al. 2015): 

 

∭𝒓.𝑵𝑑𝑣 = 0.                                                                         (4) 

 

In  equation 4, N stands for the vector consisting of vector basis functions in different directions and 𝑑𝑣 is 

the volume differential.  

 

2-3. Edge-Based FEM 

 

Figure 1 is an illustration of a tetrahedral element with node and edge indexing and in this figure, the 

relationship between node and edge is shown.  From Fig 1 it can be seen that a direction is assigned to 

each edge and it points from one node to another ( Cai et al. 2015).  

 

 
Fig 1. The numbers of edges and nodes in the tetrahedral element. 
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In node-based FEM, according to the node numbers defined in figure 1, the anomalous electric field �̂�𝑎
𝑒  in 

a tetrahedral element can be determined based on the  amount of the anomalous electric field (�̂�𝑎𝑗
𝑒 ) in each 

node ( Jin 2002; Cai et al. 2017): 

 

�̂�𝑎
𝑒 =∑�̂�𝑎𝑗

𝑒 𝐿𝑗
𝑒(𝑥, 𝑦, 𝑧)

4

𝑗=1

 .                                                                   (5) 

 

Where 𝑗 is the number of nodes in each element and  𝐿𝑗
𝑒 is the interpolation function and is obtained by  

 

𝐿𝑗
𝑒 =

1

6𝑉𝑒
(𝑎𝑗

𝑒 + 𝑏𝑗
𝑒𝑥 + 𝑐𝑗

𝑒𝑦 + 𝑑𝑗
𝑒𝑧) .                                                         (6) 

 

 𝑉𝑒  is the volume of the element, 𝑎𝑗
𝑒, 𝑏𝑗

𝑒, 𝑐𝑗
𝑒  and 𝑑𝑗

𝑒  can be determined according to the nodes 

coordinate(Cai et al. 2017). 

 

In the edge-based FEM, we have to determine vector basis function 𝑵𝒊
𝒆 instead of scaler interpolation 

function 𝐿𝑗
𝑒  in FEM. The edge number (𝑖) and the associated nodes 𝑖1  and 𝑖2  for  edge 𝑖  are defined in 

Fig 1.  The continuity of the tangential field across all element edges must be guaranteed; thus 𝑵𝒊
𝒆 must 

have a tangential component along the 𝑖th edge and none along the other edges. They must be ideal for 

representing the vector field in source-free region; thus another property of this function is that each 

satisfies the divergence condition 𝛁.𝑵𝑖 = 0 within the element. Therefore, for basis vector function, we 

examine the vector function 

 

𝑾𝑖1𝑖2 = 𝐿𝑖1
𝑒 𝜵𝐿𝑖2

𝑒 − 𝐿𝑖2
𝑒 𝜵𝐿𝑖1

𝑒                                                                    (7) 

 

This vector basis function is called Whitney-form function. It is not difficult to see that 

 

𝛁.𝑾𝑖1𝑖2 = 0 

 

𝛁 ×𝑾𝑖1𝑖2 = 2𝜵𝐿𝑖2
𝑒 × 𝜵𝐿𝑖1

𝑒                                                              (8) 

 

𝒆𝑖 .𝑾𝒊1𝑖2 =
1

𝑙𝑖
𝑒 . 

where 𝒆𝑖 is the unit vector pointing from node  𝑖1 to node 𝑖2  and  𝑙𝑖
𝑒  denotes the length of the edge 

connecting node  𝑖1 and node 𝑖2. 𝑾𝑖1𝑖2  has a constant tangential component along edge (𝑖1,𝑖2) and has no 

tangential component along the other five edges. For the vector basis function to be in the same direction 

as the unit vector, we define the vector basis function for the edge i as follows: 

 

𝑵𝑖
𝑒 = 𝑾𝑖1𝑖2𝑙𝑖

𝑒 = (𝐿𝑖1
𝑒 𝜵𝐿𝑖2

𝑒 − 𝐿𝑖2
𝑒 𝜵𝐿𝑖1

𝑒 )𝑙𝑖            
𝑒                                               (9) 

 

where 𝒆𝑖  . 𝑵𝑖
𝑒 = 1. 

 

Thus 𝑵𝒊
𝒆 possesses all the necessary properties to be a vector basis function for the edge ith associated 

with nodes (i1,i2) (Newman et al. 1986; Harrington and Mautz 1991). The anomalous electric field is 

defined at the center of each edge and is denoted as 𝐸𝑎𝑖
𝑒  , and the field inside the tetrahedral element can 

be represented by the following equation (Xiong 2011; Tiaaojie et al. 2019): 
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 �̂�𝑎
𝑒 =∑�̂�𝑎𝑖

𝑒 𝑁𝑖
𝑒

6

𝑖=1

                                                                              (10) 

 

For using Galerkin method, by substituting Eq 3 into Eq 4, we have   

 

∭(𝛁× 𝛁 × �̂�𝑎 + 𝜇0𝑠𝜎�̂�𝑎 + 𝜇0𝑠𝜎𝑎�̂�𝑏). 𝑁𝑑𝑣 = 0                                           (11) 

 

and by substituting Eq 10 into Eq 11, one can find the original differential equation as follows: 

 

𝐴𝑒�̂�𝑎𝑖
𝑒 = 𝑏𝑒                                                                         (12)   
      

where 

𝐴𝑒 =∭((𝜵 ×𝑵𝑖). (𝜵 × 𝑵𝑗) + 𝑠𝜎𝜇0𝑵𝑖. 𝑵𝑗) 𝑑𝑣                                             (13) 

 

  and 

𝑏𝑒 = −∭𝑠𝜎𝑎𝜇0�̂�𝑏
𝑒 . 𝑵𝑖 𝑑𝑣.                                                               (14) 

 

In these relations, �̂�𝑎𝑖
𝑒  is the vector that represents the unknown anomalous electric field at each edge in 

the Laplace domain and �̂�𝑏
𝑒  is the vector consisting of the background electric field in the Laplace domain 

on the edge. Using the expression given for 𝑵𝑖
𝑒 in the Eq (9), we evaluate matrices 𝐴𝑒 and 𝑏𝑒(Xiao et al. 

2018). 𝐴𝑒 consists of two integrals that must be calculated: 

 

∭((𝜵 ×𝑵𝑖). (𝜵 × 𝑵𝑗)) 𝑑𝑣         and        𝑠𝜎𝜇0∭𝑵𝑖 . 𝑵𝑗 𝑑𝑣. 

 

for first integral we have: 

 

𝛁 × 𝑵𝑖
𝑒 = 2𝑙𝑖

𝑒𝜵𝐿𝑖1
𝑒 × 𝜵𝐿𝑖2

𝑒  

=
𝑙𝑖
𝑒

36(𝑉𝑒)2
[(𝑐𝑖1

𝑒 𝑑𝑖2
𝑒 − 𝑑𝑖1

𝑒 𝑐𝑖2
𝑒 )𝑥 + (𝑑𝑖1

𝑒 𝑏𝑖2
𝑒 − 𝑏𝑖1

𝑒 𝑑𝑖2
𝑒 )�̂� + (𝑏𝑖1

𝑒 𝑐𝑖2
𝑒 − 𝑐𝑖1

𝑒 𝑏𝑖2
𝑒 )�̂�]              (15) 

then  

⟹∭(𝜵 ×𝑵𝑖). (𝜵 × 𝑵𝑗)𝑑𝑣 =
𝑙𝑗
𝑒𝑙𝑖
𝑒

1296(𝑉𝑒)3
[(𝑐𝑖1

𝑒 𝑑𝑖2
𝑒 − 𝑑𝑖1

𝑒 𝑐𝑖2
𝑒 )(𝑐𝑖1

𝑒 𝑑𝑖2
𝑒 − 𝑑𝑖1

𝑒 𝑐𝑖2
𝑒 ) 

+(𝑑𝑖1
𝑒 𝑏𝑖2

𝑒 − 𝑏𝑖1
𝑒 𝑑𝑖2

𝑒 )(𝑑𝑖1
𝑒 𝑏𝑖2

𝑒 − 𝑏𝑖1
𝑒 𝑑𝑖2

𝑒 )                                                 (16) 

+(𝑏𝑖1
𝑒 𝑐𝑖2

𝑒 − 𝑐𝑖1
𝑒 𝑏𝑖2

𝑒 )(𝑏𝑖1
𝑒 𝑐𝑖2

𝑒 − 𝑐𝑖1
𝑒 𝑏𝑖2

𝑒 )]. 
 

For the second integral from equation 9, we have: 

 

𝑵𝑖
𝑒. 𝑵𝑗

𝑒 = 𝑙𝑖   
𝑒 𝑙𝑗   

𝑒 (𝐿𝑖1
𝑒 𝜵𝐿𝑖2

𝑒 − 𝐿𝑖2
𝑒 𝜵𝐿𝑖1

𝑒 ). (𝐿𝑗1
𝑒 𝜵𝐿𝑗2

𝑒 − 𝐿𝑗2
𝑒 𝜵𝐿𝑗1

𝑒 ) 

⇒∭𝑵𝑖
𝑒. 𝑵𝑗

𝑒𝑑𝑣 =
𝑙𝑗
𝑒𝑙𝑖
𝑒

36𝑉𝑒
[𝐿𝑖1
𝑒 𝐿𝑗1

𝑒 (𝑏𝑖2
𝑒 𝑏𝑗2

𝑒 + 𝑐𝑖2
𝑒 𝑐𝑗2

𝑒 + 𝑑𝑖2
𝑒 𝑑𝑗2

𝑒 ) 

−𝐿𝑖1
𝑒 𝐿𝑗2

𝑒 (𝑏𝑖2
𝑒 𝑏𝑗1

𝑒 + 𝑐𝑖2
𝑒 𝑐𝑗1

𝑒 + 𝑑𝑖2
𝑒 𝑑𝑗1

𝑒 ) 

 

−𝐿𝑖2
𝑒 𝐿𝑗1

𝑒 (𝑏𝑖2
𝑒 𝑏𝑗1

𝑒 + 𝑐𝑖2
𝑒 𝑐𝑗1

𝑒 + 𝑑𝑖2
𝑒 𝑑𝑗1

𝑒                                                       (17) 

−𝐿𝑖2
𝑒 𝐿𝑗2

𝑒 (𝑏𝑖1
𝑒 𝑏𝑗1

𝑒 + 𝑐𝑖1
𝑒 𝑐𝑗1

𝑒 + 𝑑𝑖1
𝑒 𝑑𝑗1

𝑒 )]. 
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For evaluation of the right-hand side b, the electric field components excited by rectangular Loop in the 

homogeneous half-space are required to calculate. 

 

3.  ELECTROMAGNETIC FIELD EXCITED BY RECTANGULAR LOOP 
 

For solving equation 12, the electric field components in the homogeneous half-space need to be 

calculated. A rectangular coordinate system with its origin at the center of the rectangular loop is adopted 

(Fig 2). The rectangular transmitting loop belongs to the TE exciting mode, and the electric field contains 

the horizontal component only. The z-axis is downward vertically. The small vertical magnetic dipole 

coordinate is (𝑥, 𝑦, 0) and the rectangular loop area is integrated to obtain 𝐸𝑥  and 𝐸𝑦  at the 

point (𝑥′, 𝑦′, 𝑧).   𝐸𝑥 and 𝐸𝑦  are electric field component along x and y axis respectively. 

 

 
Fig 2. The rectangular Transmitter loop on the surface. 

 

The horizontal components of the electric field excited by the rectangular loop in the homogeneous half-

space in Laplace domain are as follows (Singh et al. 2009; Li and Constable 2010): 

 

  �̂�𝑥 =
−𝑠𝐼𝜇0
4𝜋

∫∫ [𝑇𝑡𝑒𝑒
−𝑧√𝜆2−𝑠𝜎𝜇0(𝐽0(𝜆𝜌𝑏) − 𝐽0(𝜆𝜌−𝑏))] 𝑑𝜆𝑑𝑥

∞

0

𝑎

−𝑎

                              (18) 

  �̂�𝑦 =
−𝑠𝐼𝜇0
4𝜋

∫∫ [𝑇𝑡𝑒𝑒
−𝑧√𝜆2−𝑠𝜎𝜇0(𝐽0(𝜆𝜌𝑎) − 𝐽0(𝜆𝜌−𝑎))] 𝑑𝜆𝑑𝑦

∞

0

𝑏

−𝑏

                              (19) 

 

where  

{
 
 

 
 

 

𝜌𝑏 = √(𝑥 − 𝑥
′)2 + (𝑏 − 𝑦′)2    

𝜌−𝑏 = √(𝑥 − 𝑥
′)2 + (−𝑏 − 𝑦′)2

𝜌𝑎 = √(𝑦 − 𝑦′)2 + (𝑎 − 𝑥′)2

𝜌−𝑎 = √(𝑦 − 𝑦′)2 + (−𝑎 − 𝑥′)2

    .                                                     (20) 

 

In the equations 18 and 19,  𝐼 stands for the transmitter current, s is the Laplace variable and is equal to 

−𝑖𝜔 , 𝜔 stands for angular frequency,  𝜎 is the conductivity of the homogeneous half-space, 𝜆 is the 

wavenumber, 𝜌 stands for the space between the receiver and the transmitter, (𝑥′, 𝑦′, 𝑧) is the coordinate 
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of the receiver point, 𝐽0 is the Bessel function of the first kind, zero-order and 𝑇𝑡𝑒 is the transmission 

coefficient, which can be found from the following (Li et al. 2011): 

 

𝑇𝑡𝑒 =
2𝜆

𝜆 + √𝜆2 − 𝑠𝜎𝜇0
 .                                                                   (21) 

 

The receiver is on the surface and at the center of the transmitter, then 𝑧 = 0. The EMF can be obtained by 

the solution of the magnetic impulse response from the Maxwell equation on the ground. Therefore, the 

vertical component of the magnetic field response excited by the rectangular loop in the Laplace domain 

is: 

 
𝜕�̂�𝑧

𝜕𝑡
= −(𝛁 × �̂�)

𝑧
=

𝑑�̂�𝑥

𝑑𝑦
−
𝑑�̂�𝑦

𝑑𝑥
                                                        (22) 

 

𝐸𝑀�̂� =
𝜕�̂�𝑧
𝜕𝑡

=
−𝑠𝐼𝜇0
4𝜋

( ∫∫
2𝜆2

𝜆 + √𝜆2 − 𝑠𝜎𝜇0
(
𝑏 − 𝑦′

𝜌𝑏
𝐽1(𝜆𝜌𝑏) −

−𝑏 − 𝑦′

𝜌−𝑏
𝐽1(𝜆𝜌−𝑏))𝑑𝜆𝑑𝑥 +

∞

0

𝑎

−𝑎

            

 

∫ ∫
2𝜆2

𝜆+√𝜆2−𝑠𝜎𝜇0
(
𝑎−𝑥′

𝜌𝑎
𝐽1(𝜆𝜌𝑎) −

−𝑎−𝑥′

𝜌−𝑎
𝐽1(𝜆𝜌−𝑎)) 𝑑𝜆𝑑𝑦

∞

0

𝑏

−𝑏
)                                  (23) 

 

where the following relations are used 

 

{  

𝑑𝐽0(𝜆𝜌𝑎)

𝑑𝑦
= −𝜆

𝑦−𝑦′

𝜌𝑏
𝐽1(𝜆𝜌𝑏)

𝑑𝐽0(𝜆𝜌𝑏)

𝑑𝑥
= −𝜆

𝑥−𝑥′

𝜌𝑎
𝐽1(𝜆𝜌𝑎)

.                                                        (24) 

 

We use equations 18 and 19 to evaluate �̂�𝑏
𝑒  and 𝑏𝑒, then we should solve the system of equations 𝐴𝑒�̂�𝑎𝑖

𝑒 =
𝑏𝑒 to calculate the component of horizontal electric field in each edge and element.  

 

4. FINITE ELEMENT POST-PROCESSING 
 

4-1. Iteration Algorithm 

 

All elements should be integrated as a whole to form a Global Matrix A and right-hand side b after they 

are analyzed. Then, we can obtain the system of equations 𝑨. �̂�𝑎 = 𝑏 where �̂�𝑎 a is the vector which 

represents the unknown electric field anomaly field in the Laplace domain at each edge. For the solution 

of equations, we use the BiCGstab method which developed by Vost (1992). This method is an extension 

of the CG method and has widely been used in the solution of differential equations. To reduce computing 

time, Jacques et al. (2000) propose a modified parallel version of the BiCGStab method (MBiCGStab). 

They applied the developed solver with preconditioner to linear electromagnetic systems. Motivated by 

the same ideas, Yang and Brent (2002) proposed the Corrected BiCGStab method(CBiCGstab). This 

method is reorganized without changing the numerical stability, all inner products of a single iteration step 

are independent and subsequently, the communication time required for the inner product can be 

overlapped efficiently with a computation time of vector updates. Therefore, the time of computations on 

computers can significantly be reduced. The resulting CBiCGStab algorithm maintains the favorable 

properties of the original method while not increasing computational costs. The efficiency of this method 

is demonstrated by the numerical experimental results obtained from a massively parallel distributed 

memory system (Yang and Brent 2002). The convergence of the proposed CBiCGstab is almost the same 
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as the MBiCGStab and original BiCGStab version. Experimental results of the speed up for these 

algorithms are given in Figure 3.These results are based on timing measurements of a fixed number of 

iterations.  

 

 
Fig 3. The Experimental results of the speed up for all of the BiCGstab algorithms 

 

It is seen in Fig 3 that the amount of computational time in CBICGstab can be significantly reduced than 

BICGstab and MBICGstab methods. 

 

Since time is important in the edge-based FEM, we used the CBiCGstab method to solve the 

equations 𝑨. �̂�𝑎 = 𝑏. The CBiCGstab ends the iterative process when a convergent criterion 
‖r‖

‖b‖
= 10−13 

where 𝑟 is a residual vector defined by 𝑟 = 𝑏 − 𝑨. �̂�𝑎. Using the CBiCGstab method instead the BiCGstab 

method reduced the time of program from 440 to 300 minutes in each scheme in our study. 

 

4-2. Inverse Laplace Transform (Gaver-Stehfest Algorithm) 

 

Using the component of horizontal electric field that is obtained from CBiCGstab method, we can 

determine impulse response of magnetic field from Maxwell equation in Laplace domain. This field must 

be transformed to the time domain with inverse Laplace transform. More generally, for the TEM problem, 

there are several inverse Laplace transform methods such as Fourier transform and Gaver-stehfest 

algorithm. The Fourier series technique for the Laplace inversion is based on choosing the contour of 

integration in the inversion integral, then converting the inversion integral into the Fourier transform, and 

finally approximating the transform by a Fourier series (Abate and Valko 2004). The Gaver-Stehfest 

algorithm was first proposed by Stehfest (1970) for numerical inverse Laplace transform. Abate and Valko 

(2004) compared the Fourier transform with Gaver-Stehfest algorithm for functions with oscillatory 

behavior in TEM (functions of type 𝑒−𝑎𝑡). also،they were compared these two methods with analytical 

inverse Laplace transform. 

 

In the Gaver-Stehfest and Fourier methods, N is the expansion terms of the series. In the Gaver-Stehfest 

method For N=28, time of calculations was acceptable (t=0.641s) and the amount of error was minimum 

(standard deviation was 1.47𝐸 − 11). Tests of the Fourier method showed that the accuracy of 

computations to be lower than the Gaver-Stehfest method. In the Fourier method, the time of calculation 

was about 50 minutes and the amount of standard deviation was 7.63𝐸 − 03. The tests performed showed 

that in the investigated case (function of type 𝑒−𝑎𝑡 ), the faster and more accurate procedure would be  the 

Gaver-Stehfest algorithm series (Abate and Valko 2004); thus, we used the Gaver–Stehfest algorithm to 
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transform the electric field to the time domain from the Laplace domain. �̂�(𝑠) is the electromagnetic field 

in the Laplace domain and E(t) is the electromagnetic field in the time domain. The Gaver-Stehfest 

method uses the summation (Harrington and Mautz 1991; Nabighian and James 1991; krougly et al. 

2013):  

 

𝐸(𝑡) =
𝐿𝑛2

𝑡
∑𝛼𝑛�̂�(𝑛

𝐿𝑛2

𝑡
)

𝑁

𝑛=1

                                                                 (25) 

 

where  N is the expansion terms in the series. 𝛼𝑛 coefficients only depend on the number of expansion 

terms N and they are:  

 

𝛼𝑛 = ∑
(−1)𝑛+

𝑁
2𝑘

𝑁
2(2𝑘)!

(
𝑁
2
− 𝑘)! 𝑘! (𝑘 − 1)! (𝑛 − 𝑘)! (2𝑘 − 𝑛)!

.

min (𝑛,
𝑁
2)

𝑘=[
𝑛+1
2 ]

                                       (26) 

 

Since the  
𝑁

2
 in equation 26 is a natural number, N must be even. We achieved the best results with N = 28 

which this number is called optimum value. It was not possible to get better results by increasing N 

beyond the optimum, as we increased the number of terms N in the computation, we quickly discovered 

that the numerical inversion would become unstable and our function would be subject to numerical 

errors.  

 

We have coded the algorithms using Matlab and used DPLOT for graphs. To test background 

electromagnetic fields which have obtained from algorithms, we used Electromagnetic Analysis Software 

(http://www.hgg.au.dk). 

 

5. EXAMPLES 

 
In this study, for edge-based FEM, we used a tetrahedral element instead of the brick element. The major 

disadvantage of the brick element is that it is restricted to a limited class of geometries. For comparing 

time and accuracy between tetrahedral and brick elements, we chose a model that could be solved with 

both and would often be used in electromagnetic interpretations. This model had already been investigated 

by Li et al. (2011) with a brick element. The 3D thin horizontal sheet and rectangular body are common 

configurations for conductive zones (such as the mineralization of massive pyrite and sulfide body in the 

ground).  

 

The transient electromagnetic field diffuses outward and downward from the exciting source. A particular 

advantage of TEM Systems is the fact that the measurement is taken when the transmitted fields are 

switched off. To further verify the correctness of the algorithm, it is compared with the analytical 

solutions, IE and finite difference time domain method(FDTD) in the conductive 3D geoelectric brick 

model. 

 

5-1. Example A: 3D Low Resistivity Horizontal Sheet 

 

The parameters of the geoelectric model are shown in Figure 4. The air resistivity is set as 1010 Ω𝑚, the 

homogeneous half-space resistivity is 102  Ω𝑚, and the resistivity of the horizontal low resistivity sheet 

is 1 Ω𝑚. The side of the transmitter loop is 100 m long,  the equivalent of the receiving coil is 1 𝑚2 and 

the transmitting current is 1 A.  

 

http://www.hgg.au.dk/
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Fig 4. The 3D horizontal sheet model 

 

In this model, in addition to using tetrahedral elements, we used brick elements to compare the results. It 

should be noted that to compare two kinds of the element, we should try to preserve the same condition 

for both. It means that the number of the unknown edges in tetrahedral and brick meshes need to be almost 

equal. Three Matrix size can be adopted as shown in Tables 1 and 2 for the mesh size in brick and 

tetrahedral meshes. The number of nodes and edges depends on the maximum length of the edge in 

meshes. We increased the nodes and edges in the three schemes to compare the results. The number of 

edges in each scheme at both meshes are approximately equal. Due to different geometric shapes in brick 

and tetrahedral elements, we were not able to provide a completely identical number for edges in both 

meshes. 

 

Table 1. Three schemes in Brick mesh 

Scheme Number of Nodes Number of Elements Number of Edges 

1 25460 24486 293832 

2 34170 30273 363276 

3 36783 34301 411612 

 

 

Table 2. Three schemes in Tetrahedral mesh 

Scheme Number of Nodes Number of Elements Number of Edges 

1 11382 49367 296202 

2 14039 60811 364866 

3 15781 69121 414726 

 

The calculated results for the horizontal sheet in different mesh schemes for tetrahedral and brick meshes 

are shown in Figs 5 and 6.  
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Fig 5. The EMF curves for example A with three brick element meshes 

 

 
Fig 6. The EMF curves for example A with three tetrahedral element meshes 

 

It can be seen that scheme 1 gives poor results and scheme 3 is the best scheme in brick and tetrahedral 

meshes (Figs 5 and 6). 

 

The EMF curves of brick and tetrahedral meshes had the same general behavior. In the tetrahedral mesh 

(Figs 5 and 6), prior to 3 ms, the EMF curves calculated by the three mesh schemes are basically uniform. 

From among 4 ms, the curve of tetrahedral meshes have less error than the brick meshes. For both 

tetrahedral and brick meshes, the relative errors are shown in figure 7.  For tetrahedral mesh, it is observed 

from the curves of the relative error (Fig. 7), that the relative errors of the various mesh schemes were all 

within 2% in 0.8 ms, and when time is 3.4 ms, the relative errors for the three mesh schemes are 12.5%, 

7%, and 4.5% or so, respectively. In 13 ms, the relative errors for these three mesh schemes are 27%, 

13%, and 6% or so, respectively. 
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Fig 7. The relative error curves e in tetrahedral and brick meshes for example A 

 

For brick element meshes, the relative errors of the various mesh schemes are all within 4% in 0.8 ms, and 

when time is 3.4 ms, the relative errors for the three mesh analytic schemes are 18%, 10%, and 6% or so, 

respectively.  

 

At time 13 ms, the relative errors for the three mesh analytic schemes are 34%, 17.5%, and 7.5% or so, 

respectively (Fig 7). As the figure shows, early-time relative errors in brick and tetrahedral meshes are less 

than the late-time relative errors. The phenomenon can be interpreted by the ‘smoke ring’ theory of 

transient electromagnetic field dispersion, in the horizontal direction, the electromagnetic field has less 

scope for dispersion in the early stage, and the induction current is limited to the horizontal low resistivity 

sheet. 

 

With increasing time, the induction current disperses out of the horizontal low resistivity sheet. The 

comparison between brick and tetrahedral meshes shows that relative errors in scheme 1,2 and 3 for 

tetrahedral, are less than the brick element. It is shown in Fig. 8 that the number of edges is important in 

amount of relative errors. The time in these curves is 8 ms.  

 

 
Fig 8. The relative error for Brick and Tetrahedral meshes for example A (t=8 ms) 
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It is observed from figure 8 that with an increase in the number of edges in the model, the relative error 

between brick and tetrahedral meshes would decrease. Given that the speed of the edge-based FEM is 

slower than FEM, sometimes the number of edges should be reduced and in this situation, the tetrahedral 

mesh has much less error than the brick mesh. 

 

For tetrahedral mesh, the multi-measuring point EMF curves are shown in Fig 9. The measuring line was 

1500 m long perpendicular to the strike with 10 measuring points in total.  The EMF curve at the different 

moments is one canyon flanked by two mountains. The forming phenomenon is related to the number of 

magnetic lines cut by the upright low resistivity sheet.  

 

 
Fig 9. The EMF curves at observation points with tetrahedral mesh for example A (scheme 3) 

 

In the early stage, the electromagnetic field is mainly centralized to the surface and the EMF received in 

the measuring points is mainly related to the number of magnetic lines cutting the top of the sheet and 

showed background field. These curves have been drawn for scheme 3 in the tetrahedral mesh (Fig 9).  

 

5-2.  Example B: 3D Vertical Geoelectric brick model with Different Resistivity Contrast 

 

In our design, the resistivity of the homogeneous half-space was set as 20 Ω𝑚, and 100 Ω𝑚 respectively, 

and low resistivity sheet resistivity was set as 2 Ω𝑚 (Fig10). The transmitting side was 100 m long, and 

the transmitting current was 1A. The equivalent area for the receiving coil was 1𝑚2. Erath was divided 

into 2892 tetrahedral elements that consisted of 17358 edges and 697 nodes. 

 

 
Fig 10. The 3D vertical body model 
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The obtained results in two resistivity contrasts are shown in Fig 11. The edge-based FE solution fitted 

right in with the analytical solution value for two resistivity contrast models. For the model with a 

homogeneous half-space resistivity of 20 Ω𝑚, the relative error was less than 1.18% at 0.2 ms and was 

less than 2.28% at 1.29 ms. 

 

 
Fig 11. The EMF for two resistivity contrast in tetrahedral mesh for example B 

 

As for models with homogeneous half-space resistivity of 100 Ω𝑚, the relative error reaches 17% at 1.5 

ms. It is seen in Fig. 12 that with the increase in the homogeneous half-space resistivity, the EMF would 

decrease, while the EMF error solved by the edge-based FEM with tetrahedral mesh would become bigger 

and bigger, so the edge-based finite element would be suitable for low resistivity contrast.    

 

 

 
Fig 12. The relative error curves for two resistivity contrasts for example B 
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The multi-measuring point EMF curves for example B are shown in Fig. 13. The measuring line was 200 

m long perpendicular to the strike with 15 measuring points in total. 

 

 
Fig 13. The EMF curves in observation points in example B( 𝜌 = 100Ω𝑚) 

 

In the initial stages, currents penetrate in the vicinity of the surface and curve show background field. The 

curves are sharper than a 3D horizontal sheet (Fig 9). 

 

5-3.  Example C: 3D Low Resistivity Geoelectric brick Model 

 

To further verify the correctness of the algorithm, the algorithm in this paper was contrasted with the 

Integral Equation and FDTD methods ( Newmann et al. 1986;Wang anf Hohmann 1993). Model C is 

shown in Fig 14.  

 

 
Fig 14. The 3D conductive brick model (example C) 

 

The side of the transmitting loop was 100 m long, and the observing value was the vertical component of 

the EMF. Erath was divided into 682 brick and 1487 tetrahedral elements. The numbers of nodes in brick 

and tetrahedral meshing were 880 and 389 respectively. The brick mesh consisted of 8184 edges and there 
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were 8922 edges in tetrahedral meshes. To further verify the correctness of the edge-based FEM with 

tetragedral mesh, it is compared with the analytical solutions, edge-based FEM with brick mesh (Li et al. 

2011), IE and finite difference time domain method(FDTD) in the conductive 3D geoelectric brick model, 

the behavior of the four curves stayed the same over the time. The edge-based FE solution fitted well with 

the other methods from 0 to 1.5 ms. From 1.5 to 7 ms, the edge-based FE solution was bigger than the 

analytical solution; however, the IEM and FDTD method solutions were less than the analytical solution. 

(Fig 15). 

 

 
Fig 15. The curve of EMF for FDTD, IE, and edge-based FE solutions in example C 

 

The IE and FDTD methods reflect the same error rates in early and late time however, from 1.5 ms to 7 

ms, tetrahedral meshes reflect fewer errors than brick elements. Between the four curves, edge-based FEM 

with tetrahedral element has the best agreement with analytical solution. For this model (example C), the 

multi-measuring point EMF curves for tetrahedral mesh are shown in Fig 16(edge-based-FE solution). 

The measuring line was 160 m long perpendicular to the strike with 16 measuring points in total. 

 

 
Fig 16. The EMF curves at observation points with tetrahedral mesh in example C (edge-based FE 

solution) 
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The distance between two maximums is proportional to the width of the body and these points are seen on 

the boundaries of the model. 

 

6. CONCLUSIONS 
 

The 3D numerical modeling is performed for the central loop configuration of the TEM using the edge-

based finite element method. Although the brick element is a simple mesh and an easy finite-element 

analysis, the mesh is not used to precisely describe the complicated geoelectric model and surface 

topography. Thus, in this study, the linear tetrahedron element was used to replace the brick element. We 

validated the method using several 3D geoelectric models with different mesh schemes and different 

resistivity contrasts. The numerical studies showed that using the tetrahedral element can produce an 

accurate result for TEM modeling. The edge-based finite element solutions of these models show a good 

agreement with the analytical and integral equation solutions. In the 3D horizontal sheet, the numerical 

results also demonstrated that the tetrahedral mesh commits fewer errors than the brick mesh. To reduce 

the computational time, the number of unknown parameters and edges need to be reduced and this will 

cause more errors in solutions. To overcome this problem, choosing a tetrahedral mesh is a suitable 

option. By taking the low resistivity 3D brick geoelectric model as an example, the results of the EMF 

obtained by the edge-based finite element method, integral equation method, and finite difference time 

domain method are consistent with each other. In this paper, the brick and sheet geoelectric models are 

applied for comparing tetrahedral and brick meshes. Thus in the subsequent studies, complicated and 

combined models can also be used. This method can also be applied and tested for separate transmitter-

receiver loops in the transient electromagnetic method.   
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