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ABSTRACT 

 

Nowadays, constructing effective statistical estimates with a limited amount of statistical 

information constitutes a significant practical problem. The article is devoted to applying the 

Bayesian scientific approach to the construction of statistical estimates of the parameters of the 

laws of distribution of random variables. Five distribution laws are considered: The Poisson law, 

the exponential law, the uniform law, the Pareto law, and the ordinary law. The concept of 

distribution laws that conjugate with the observed population was introduced and used. It is shown 

that for considered distribution laws, the parameters of the laws themselves are random variables 

and obey the typical law, gamma law, gamma - normal law, and Pareto law. Recalculation formulas 

are obtained to refine the parameters of these laws, taking into account posterior information. If we 

apply the recalculation formulas several times in a row, we will get some convergent process. Based 
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on a converging process, it is possible to design a process for self-learning a system or self-tuning 

a system. The developed scientific approach was applied to solve the measuring problems for the 

testing measuring devices and technical systems. The results of constructing point estimates and 

constructing interval estimates for these laws' parameters are given. The results of comparison with 

the corresponding statistical estimates constructed by the classical maximum likelihood method 

are presented.  

  

Keywords: measurement accuracy, Bayesian scientific approach, a posteriori information, 

metrological and measurement problems. 

 

 

RESUMEN 

 

Hoy en día, la construcción de estimaciones estadísticas efectivas con una cantidad limitada de 

información estadística constituye un problema práctico significativo. El artículo está dedicado a 

aplicar el enfoque científico bayesiano a la construcción de estimaciones estadísticas de los 

parámetros de las leyes de distribución de variables aleatorias. Se consideran cinco leyes de 

distribución: la ley de Poisson, la ley exponencial, la ley uniforme, la ley de Pareto y la ley 

ordinaria. Se introdujo y utilizó el concepto de leyes de distribución que se conjugan con la 

población observada. Se muestra que para las leyes de distribución consideradas, los parámetros 

de las leyes mismas son variables aleatorias y obedecen la ley típica, la ley gamma, la ley gamma 

normal y la ley de Pareto. Se obtienen fórmulas de recálculo para afinar los parámetros de estas 

leyes, teniendo en cuenta información posterior. Si aplicamos las fórmulas de recálculo varias 

veces seguidas, obtendremos algún proceso convergente. A partir de un proceso convergente, es 

posible diseñar un proceso para el autoaprendizaje de un sistema o el autoajuste de un sistema. El 

enfoque científico desarrollado se aplicó para resolver los problemas de medición de los 

dispositivos de medición de prueba y los sistemas técnicos. Se dan los resultados de la construcción 

de estimaciones puntuales y la construcción de estimaciones de intervalo para los parámetros de 

estas leyes. Los resultados de la comparación con el estadístico correspondiente  

 

Palabras clave: precisión de la medición, enfoque científico bayesiano, información a posteriori, 

problemas metrológicos y de medición. 

 

 

1. INTRODUCTION 

 

The problem of constructing effective statistical estimates is an important applied task. This 

problem has to be solved when conducting scientific research related with processing of statistical 

data in areas such as biochemistry, machine vision problem, automated digital control problem, the 

development and implementation of the concept of a smart home - a smart city, problem of 

economical simulation, for the purpose of development and implementation of new technologies 

in manufacture (Vishnyakov & Egorov, 2013: Duyguİçen, 2019: Yang et al, 2018: Higgins et al, 

2019: Touzani et al, 2019: & Butenweg, 2019).   

 

In (Ayvazyan, 2008). the general scheme of the Bayesian approach in statistical estimation in 

econometrics was described. Some other applied problem of applications of Bayesian scientific 
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approach including the construction and investigation of self-leaning systems and development of 

pattern recognition problem are described in (Kropotov, & Vetrov, 2007: Yochan & Jinkyun, 2019, 

Wang et al, 2019: Geweke & Durham, 2019: Michael et al, 2018).  

 

Investigations described in there were devoted to practical problems of construction of effective 

statistical estimation when processing measurement results, when setting and studying 

measurement problems, and when processing the results of tests of measuring equipment. In the 

Bayesian approach is described in the problems of constructing statistical estimates in case when 

the studied statistical sampling of data has a normal distribution law. However, for other 

distribution laws in solving metrological problems, the Bayesian approach has not yet been 

developed and used (Lavrik et al, 2019: Francisco et al, 2019: Gao et al, 2019: Mishchenko et al, 

2021: Lazarenko et al, 2021).  

 

This article describes a method for constructing statistical parameter estimates for solving 

measurement problems and processing test results for five fairly common distribution laws: 

Poisson's law, exponential law, uniform law, Pareto law with unknown shape parameter and known 

shift parameter and normal law in two cases: as with unknown means and known dispersion, as 

unknown means and unknown dispersion. The concept of distributions conjugated with the 

observed population is introduced and used. The method for calculating specific values of the 

parameters of conjugated distribution laws was developed. Algorithm for correcting these 

parameters is described with joint consideration of a priori and posterior information was created. 

Examples of constructing of point estimates and of interval estimates are presented (Khayrullin et 

al, 2021: Volchkov et al, 2019: Khayrullin, 2019). 

 

2. MATERIALS AND METHOD  

 

General scheme of the Bayesian approach in statistical estimation 

 

Let the distribution law of the analyzed random variable depends on s -dimensional vector of 

numerical parameters  ),...,,( 21 s . Here capital letter is used to denote vector, and small 

letters are used to denote scalar quantities. The problem is to construct the best, in a certain sense, 

statistical estimation ̂  of this vector of parameters on the base of  available statistical sampling  

),...,,( 21 nxxxX   . Here capital letter is used to denote statistical data in general and small letters 

are used to denote specific realizations of a random variable.  

 

The general logic scheme of the Bayesian scientific approach in statistical estimation procedure is 

presented in Figure1. 
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Figure1. General logical scheme of the Bayesian approach in statistical estimation 

  

Let us describe the implementation of the Bayesian estimation scheme for the components of vector 

of parameter  . A priori information about the vector of parameters is based on the background 

of the functioning of the analyzed process and on expert evaluations of its essence and specificity 

too. We assume that a priori information is given by means of  function of the distribution density 

)(  . 

 

Statistical data ),...,,( 21 nxxxX   are generated in accordance with the law of probability 

distribution )( Xf  , where )( Xf  - the meaning of the density function of the observed random 

variable ),...,,( )()2()1( k   at a point ),...,,( 21 nxxxX   is understood. By default, it is 

assumed that statistics sampling nxxx ,...,, 21   with a fixed one   are statistically independent and 

its form a random sample from the analyzed set. So, getting new statistical data, we attach the 

corresponding sample (empirical) information to the available a priori information about the 

parameter (as a function )( ). Accordingly to maximum likelihood method (MLM), the 

conditional likelihood function ),...,,( 21 nxxxL  for each given value of     the available 

observations   nxxx ,...,, 21     is determined by the formula: 

 

                                )(...)()(),...,,( 2121 nn xfxfxfxxxL                                          (1) 

 

The calculation of the posterior distribution ),...,,(~
21 nxxx  marked by a wave from above is 

carried out using the Bayes formula: 

 

                                      

 




dxxxL

xxxL
xxx

n

n

n
)(),...,,(

),...,,()(
),...,,(~

21

21

21



    .                                    (2) 

 

The construction of Bayesian point estimates and interval estimates is based on knowledge of the 

posterior distribution  ),...,,(~
21 nXXX  given by relation (2). In particular, the average value of 

this distribution is used as Bayesian point estimates:  
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                                           dxxxxxxE nn

Б

СР ),...,,(~),...,,(ˆ
2121

)(  .                               (3) 

 

Note that to determine the general form of a posteriori density 

),...,,(~
21 nxxx  it is enough for us to know only the numerator of the right-hand side of  (2), since 

the denominator of this expression plays the role of a normalizing factor and does not depend on 

 . This fact greatly simplifies the process of practical construction of statistical estimates. 

We also note one important optimal property of the estimate  )(ˆ Б

СР . Let ),...,,(ˆ
21 nxxx  be some 

estimate of the parameter   . It is shown that if the quality of the assessment of ),...,,(ˆ
21 nxxx  

we measure by a posteriori Bayesian risk 

 

         dxxxxxxxxxExxR nnnnn

Б ),...,,(~)),...,(ˆ(,...,)),...,(ˆ(),...,( 21

2

11

2

11

)(
 

 

or its value averaged over all possible samples 
)(Б

СРR  , then the Bayesian estimate (3) is the best. 

 

To construct a Bayesian confidence interval for the vector of parameters  , it is necessary to 

calculate, according to formula (2), the function ),...,,(~
21 nxxx  of the posterior distribution law 

of the parameter   , and then, using the given confidence probability 
0P  , determine the 

)%100(5,0 0P  and  )%100(5,0 0P  points of this law, which give the left and right ends of the 

desired interval estimate, respectively 

 

A priori distribution laws conjugating with the observed general statistical sampling 

 

Below we give the definition of the conjugate distribution law. A set of a priori distribution laws 

 DG );(  are called conjugate with respect to the investigated general statistical data  with 

density function )( Xf  (or with respect to the likelihood function ),...,,( 21 nxxxL ,  if the 

posterior distribution law ),...,,(~
21 nxxx  calculated by formula (2) again belongs to the same 

set  DG );( . Here D  - is the value of the vector of parameters of the distribution laws )(  

. 

In other words, a set of distributions  DG );(  is conjugate to ),...,,( 21 nxxxL  if it is closed 

with respect to operation (2) of converting a priori distribution law to the posterior one. 

Thus, the use of probability distributions conjugate with respect to L  laws as a priori laws makes 

it necessary only to recalculate the numerical values of the parameters of the known distribution 

law in the transition from a priori distribution law to a posterior distribution law. 

 

A condition of the existence of a conjugate set of a priori distribution laws. 

 

If the likelihood function ),...,,( 21 nxxxL  can be represented in the form : 

                    ),...,,();,...,,(),...,,...,,(),...,,( 212121121 nnmnn xxxxxxTxxxTvxxxL  ,            (4) 
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where  ),...,,( 21 nj XXXT , ),...,2,1( mj   and  ),...,,( 21 nxxx   -  are some functions of statistical 

sampling 
nxxx ,...,, 21
 that are independent for each value of the  vector  of  parameter  , then 

there exists a set  DG );(  of a priori distribution laws a conjugating  with ),...,,( 21 nxxxL  

. 

Now we provide that the conditions for the existence of a conjugate a priori distribution are satisfied 

for all the distribution laws considered above. 

 

Poisson distribution: 

  
 e

x
xPxf

x

!
)(  ,  ,...3,2,1x   , 

   - unknown value for parameter, 








 





 

n

i i

x
n

n

i i

x

n
x

ee
x

xxxL

n

i

ii

11

21
!

1

!
),...,,( 1  . 

We have: m = 1, xxxxxT
n

i

in 
1

21 ),...,,(  . 

 

Exponential distribution: 












0,0

0,
)(

x

xe
xf

x

 , 

  - unknown value of parameter, 

 

































0,0

0,),...,,( 1

21

x

xexxxL

n

i

ix
n

n    . 

 

In this case, we have: m  =  1 , xxxxxT
n

i

in 
1

21 ),...,,( .   

Distribution uniform on a closed interval ];0[  : 













];0[,0

0,
1

)(

x

x
xf  , 

  -  unknown value of parameter, 

 
n

nxxxL 











1
),...,,( 21   for   

ni
ixnx




1

max max)(  . 

 

In this case, we have:  m  =  1; )(),...,,( max21 nxxxxT n   . 

 

Pareto distribution with an unknown shape parameter value  and a known shift value 
0x : 
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











 



0

01

0

,0

,
)(

xx

xx
x

x
xf  . 

Respectively: 

n

n

n

nn
n

i

i

n

o

n

n g
x

g
xxxxxL 





 


















 

0

)1(

1

21 ),...,,(   , 

here   
nn

i

in xg

1

1








 



- geometric mean value of statistical sampling  of analyzed random variable 

nxxx ,...,, 21
 . So, we have m  = 1, )(),...,,( 21 ngxxxT n  .  

 

Normal distribution law with known dispersion 
2

0 :   

Let random value     has the normal distribution law ),( 2

0 N .   

 

Respectively: 


































 
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n

i

i

n
n

i

in xxfxxxL
1

2

2
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2

1
exp
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1
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
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


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



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
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


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
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
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


 
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2
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001
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1
exp
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1
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2

1
exp . 

So we have m  = 1 , 



n

i

in x
n

xXXXT
1

21

1
),...,,( .  

 

Normal distribution with unknown means 1   and unknown parameter   /12
(unknown 

dispersion   2

2

2 /1 D ) : 

 

Let random value     has the normal distribution  21 /1;  N . 

 

Respectively:   m =2 ;  xXXXT n ),...,,( 211   ;  2

1

2

212 )(
1

),...,,( xx
n

sXXXT
n

i

in 


  .  

Thus, for each considered distribution laws, there is an a priori distribution law conjugate with 

likelihood function L  (4). These conjugate law depends on one or two unknown parameters. 

 

The technique of finding a set of a priori distribution laws conjugating with the observed 

general statistical set 

 

The general form of the posterior distribution ),...,,(~
21 nxxx calculated by formula (2) is 

determined, accurate to the normalizing constant, only by the numerator of the right-hand side of 

this formula. Therefore, bellow when analyzing equalities that are accurate up to the normalizing 

constant, we will use the sign   . 
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We describe the main steps of the technique. 

 

Step 1: Check condition (4) for the existence of a set of a priori distributions conjugate to the 

likelihood function L . 

 

Step 2: If the likelihood function L admits representation (4), then the first approximation is 

specified for the distribution density function )(FA  in accordance with the following rule: 

 

A)  if the estimated scalar parameter   can (theoretically) take values on a finite interval 

],[ maxmin  or on an infinite interval from   to   , then the a priori density function )(  

should be considered constant on the corresponding interval, that is const )(  at );(   ; 

 

B) if it follows from the meaning of the parameter being evaluated that it can take only positive 

values at );(  , then we should assume that the distribution density function of the logarithm 

of the parameter value is constant over the entire numerical direct line, i.e. const )(ln , at 

);0(  . 

 

Note that for the a priori distributions determined in this way, the well-known rule of normalizing 

the probability density function may be violated. However, this does not cause “technical 

inconvenience”, since recalculation of such an “improper” a priori density function )(  into a 

posterior one according to formula (2) gives an ordinary density function  ),...,,(~
21 nxxx  that 

satisfies the normalization condition. 

 

Step 3: The posteriori distribution function is recalculated using formula (2). 

Note that the first recount immediately yields the corresponding form of a posterior distribution 

associated with the likelihood function. 

 

Step 4: The parameters of the distribution density conjugating with the likelihood function are 

refined. 

 

Let us demonstrate the implementation of the technique for the distribution laws considered above. 

Poisson stream. It follows from the meaning of the parameter   that it can only take positive 

values, therefore, we determine 




1
)( FA  . 

Then, given the fact that 




  n
x

n exxxL

n

i

i

1),...,,( 21 , 

 

We have   

.),...,,()(),...,,(~ 1

1

2121

 n
x

nFAn exxxLxxx

n

i

i



   



 

 

1309 

The right-hand side of this relation is (up to a normalizing factor not dependent on ) the gamma 

distribution density law 

                                                      








 e
Г

1

)(
)(   ,  0  ,                                               (5) 

with parameters  



n

i

ix
1

  и  n  . 

Consequently, the family of conjugate a priori distributions of the parameter   of the observed 

general population belongs to the class of gamma distribution laws (5). 

Note that with 1  gamma distribution turns into an exponential distribution, with 10  

gamma distribution approaches the normal distribution, and for large integer values  - into the 

Erlang distribution. If 2/1 , and the value of   is a multiple of 1/2, then the gamma 

distribution coincides with the distribution of Pearson
2  (chi-square). 

 

Exponential distribution. Since 0 , we take 




1
)( FA  . 

Then, given the fact that   














 

 

n

i

ix
n

n exxxL 1),...,,( 21   we have 






















 

n

i

ix
n

nFAn exxxLxxx 11

2121 ),...,,()(),...,,(~   . 

 

The right-hand side of the last relation determines (up to a normalizing factor independent on  ) 

the gamma distribution density (5) with parameters n  and 



n

i

ix
1

 . So the set of conjugate 

a priori distributions of the scale parameter   of the exponentially distributed general population 

belongs to the class of gamma distributions. 

Uniform distribution. Since the parameter   can take any positive values, we determine 




1
)( FA . Then, given the fact that 

n

nxxxL 











1
),...,,( 21    и  

ni
ixnx



1

max 0max)( ,  

we have 

                     
























)(,0

)(,
1

),...,,()(
),...,,(~

max

max

1

21
21

nx

nxxxxL
xxx

n

nFA
n







      . 

 

But the right-hand side of the last relation is (up to a normalizing factor independent on  ) the 

Pareto distribution density of the form 
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












 



min

min1

min

,0

,
)(                                                      (6) 

with shape parameter n  and shift parameter )(maxmin nx . Consequently, the set of 

conjugate a priori distributions of the parameter   of a uniformly distributed random variable on 

];0[   belongs to the class of Pareto distributions of the form (6). 

Pareto distribution. Let us consider the Pareto distribution law with an unknown value of the shape 

parameter   and some fixed value of the shift parameter 0x . Since the parameter   can take any 

positive values, we determine 



1

)( FA  .  Then 
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The right-hand side of (8) under condition (7) determines (up to a normalizing factor independent 

of the parameter  ) the gamma distribution density (5) with the parameter n  and parameter 









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0

ln
x

g
nn n

 . 

 

Thus, the conjugate a priori distributions of the shape parameter   of the observed Pareto-

distributed general population belong to set of  gamma - distribution laws. 

 

Normal distribution law with known dispersion: 

Since the parameter   can take any positive or negative values, we determine  )(FA  .  Then 

 

                                                       












 2

2

0

)(
2

exp)( x
n

.                                                   (9) 

 

The right-hand side of formula (9) is (up to a normalizing factor independent of   ), the density of 

the normal distribution with average value x  and dispersion n/2

0 .  Consequently, the family of 

conjugate a priori distribution laws of an unknown average value of   a normally distributed 

general set  (for a known variance  D2

0 ) itself  belongs to the class of normal distribution law 

(9). 

 

Normal distribution law with unknown means and unknown dispersion: 

 

Note that for the Problem 2 the right-hand side is (up to a normalizing factor independent of   and 

h ) the density of two-dimensional gamma - normal distribution law :  
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Since the parameter 1  can take any positive or negative values, we determine constFA  )( 1  .  

Since the parameter 2  can take only positive values, we determine 
2

2

1
)(


FA  .  Then 

 

                       hh
h

hh 


  







  exp)(

2
exp)(),( 12
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0                                    (10) 

 

with parameters n0 ,  x0  ,  
2

1


n
 ,  




n

i

i xx
1

2)(
2

1
  .  

Consequently, the set of conjugate a priori distribution laws of a two-dimensional parameter 

belongs to the class of two - dimensional gamma-normal distribution law (10). 

 

Method for calculating specific parameter values in conjugate a priori distribution laws. 

 

Let we know the a priori mean values of the estimated parameter ),...,,( 210 sEEEE   

and their standard deviations jj D  , sj ,...,2,1  . The parameters of the a priori 

distribution, as a rule, can be determined by the method of moments.   We describe the 

implementation of this technique for the conjugate distributions considered above. 

Gamma distribution. The average value ( E ) and variance ( D ) of the gamma distribution are 

expressed in terms of the parameters   and   by the formulas



E  , 

2


D . Substituting 

in these relations instead of E  and D  respectively, the given values of 0  and 
2 , we obtain 

the expressions for  and  : 

 

                                                        
2

2
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
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2
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
  .                                                             (11) 

Pareto distribution. The shape parameter   and the shift parameter min  can be found from the 

given values  E0  and D2  from the solution of the system of equations 
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The solution to has the form: 

                                         
2
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011
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    ,    )1(

1
0min 
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   .                                       (12) 
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Using as a priori laws the probability distributions associated with the observed general population 

allows us to determine their general form, i.e., it defines a whole set of a priori distribution laws 

)};({ D . However, when implementing the Bayesian approach, we must operate with a specific 

a priori distribution law, which requires knowledge of the numerical values 0D  of the parameters 

D . 

 

Since the calculation of parameters for the normal law with unknown means and   known dispersion 

is obviously, we describe the procedure for calculating parameters only for the normal law with 

unknown means and unknown dispersion. From the properties of two-dimensional gamma - normal 

distribution law it follows that the partial a priori distribution of a parameter h  is a gamma 

distribution law with parameters   and  . Therefore, using the given values of Ehh 0
 and 

Dhh 2
, we compose two equations with respect to   and  :  

0/ hEh   , 
22/ hDh  

. Then we obtain the solution: 
22

0 / hh    and  
2

0 / hh   . 

 

The value of the shear parameter in the distribution (6) is equal to 0   and  

10

2












 ,    
1

1
20














 . 

 

 

Recalculation of parameter values during the transition from a priori distribution to a posterior 

distribution. 

 

Let )};({ D  be a set of a priori distributions conjugate to the likelihood function 

),...,,( 21 nxxxL  of the observations ),...,,( 21 qdddD  and let we have ( ),...,,( 21 qdddD  - vector 

of parameters on which the conjugate a priori distribution );( D  depends. And let 0D  is  the 

given (known) parameter values D  in the analyzed case. Then, using a series of identical 

transformations the right side of the ratio ),...,,();(),...,,(~
21021  nn xxxLDxxx  

is given, up to factors independent on  , to the form 

 ),...,,(;( 21 nxxxD . Here the last function belongs to the set );( D , and each of the 

components ),...,2,1(),,...,,( 21 qjxxxd nj   of the parameter vector ),...,,( 21 nxxxD  are a 

function of 0D  and ),...,,( 21 nxxx . 

 

Let us describe the implementation of this general scheme for the distribution laws considered 

above. 

 

Poisson distribution. As we saw earlier, the likelihood function of the observations of the Poisson 

population is: 

                                                     
 


  n

x

n exxxL

n

i 1

1

),...,,( 21  .                                          (13) 



 

 

1313 

 

In view of (13), using the gamma distribution (5) as the a priori distribution of the parameter, we 

have: 

 
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This confirms that the conjugacy of the a priori gamma distribution, and the posterior gamma 

distribution is determined by the parameters 
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Exponential distribution. Using the gamma distribution (5) as the a priori distribution of the 

parameter, we have: 
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We see that the posterior distribution of the parameter again obeys the gamma distribution law (5), 

but with the parameters 

                                         n~       ,        


n

i

x
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1

~
                                                         (15) 

Uniform distribution. Using the Pareto distribution (6) as the a priori distribution of the parameter, 

we have: 

                          
nnxxx
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It follows that the posterior distribution of the parameter   is described, as well as the a priori 

distribution, by the Pareto law, but with the parameters: 

n~       ,         nxxx ,...,,;max
~

21minmin  . 

Pareto distribution. Using the gamma distribution (5) as the a priori distribution of the parameter 

 , we have: 
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It can be seen that the posterior distribution of the parameter   again obeys the gamma distribution 

law (5), but with the parameters 
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Let )};({ D  be a set of a priori distribution laws associated with the likelihood function 

),...,,( 21 nxxxL  of our observations; ),...,,( 21 qdddD - the vector of parameters on which the 

conjugate a priori distribution );( D  depends; 0D  - given (known) values of the parameters D  

in the analyzed case. 

Normal law with known dispersion.  
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Note that the average  value 1

~
d   and dispersion 2

~
d  of a posterior normal distribution law are the 

weighted average values of a priori and sample mean and variances, respectively. 

Normal law with known dispersion.   When implementing the general scheme for converting a 

priori parameters into a posteriori parameters ones in this case, one should take into account the 

representation of the likelihood function L  in the form (6); a priori density form of two-

dimensional gamma - normal distribution (10) too. And the vector of parameters is 
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3. RESULTS 

 

Task 1. The intensity of the flow entering the recording element of the measuring instrument per 

second is described by the Poisson distribution with an unknown parameter value  E . The 

number of registered particles ix  per second is shown in the table 1: 

 

 

Table1. The number of registered particles   per second 

i 1 2 3 4 5 6 7 8 

Xi

 E

 

3 1 4 2 6 3 3 2 

 

From the results of the analysis of the operation of similar measuring instruments in similar 

conditions, a priori mean value 6,30  E   and variance 09,02

0  D are known. 

Decision. In this case, the conjugate a priori distribution of the parameter   exists and is described 

by the gamma law. The parameters   and   of gamma distribution are determined from the 

solution of the system of equations: 


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2
D
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Solving this system we get  144  and 40 . 

In accordance with the above recalculation formulas (12) for the gamma distribution, we have: 

16824144~   , 48840
~

 .  

 

Thus  5,3
~

/~),...,,(ˆ
21

)(   n

Б xxxE   and it can be argued that inequalities 

)
~

,~()
~

,~( 975,0025,0  are true with probability 95,00 P , where 

)
~

,~(  q is the 100q% - gamma distribution point with the parameters ~  and
~

.  Using 

the Excel function ГАММАРАСПР, we get ]05,4;99,2[
~ )( Б with probability 

95,00 P . Note that the ГАММАРАСПР  function built into Excel differs from the standard 

table function that defines the gamma distribution in that instead of the input parameter  , you 

must specify the value inverse to it /1  . 

Relevant estimates using the maximum likelihood method: 0,3ˆ  xМLM   and  

]20,4;80,1[МLM  with probability 95,00 P  . 

 

Thus, the use of a priori information on the parameter   in allowed us to narrow the range of the 

interval estimate by more than two times. 

 

Task 2. In some cases of metrological practice, the measurement results or their errors are 

considered as random variables   uniformly distributed over a certain interval ];0[  . Let the 

uniformly distributed random variable take the values: 2,11 x  ; 5,22 x  ; 5,03 x  ; 

2,34 x  ; 9,25 x . Let the parameter   be assumed to be unknown. A priori information: the 

average value of the parameter 5  and the standard deviation is 4,1 . 

 

Decision. In this case, the conjugate a priori distribution of the parameter   exists and is described 

by the Pareto distribution with the shape parameter   and the shift parameter min  , which are 

determined according to (10): 

71,4
4,1

5
1111

2

2

2

2
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 ,     94,371,35
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1
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1
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
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The parameters of the posterior Pareto distribution are determined by the conversion formulas (14): 

 

71,9571,4~  n  ,       94,3,...,,,max
~

521minmin  xxx . 

 

Respectively: 
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39,4
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 xxxEБ

 and  )]
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;~();
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;~([ min025,0min975,0   

 

with probability 95,00 P , where )
~

;~( minq  is the 100q% Pareto distribution point with 

parameters ~   and min

~
 . Since the distribution function Pareto is determined by the relation 
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then the values )
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025,0
)

~
;~(

~
~

max025,0

min 


















  и  975,0

)
~

;~(

~
~

min975,0

min 


















. 

The solution to these equations has the form: 
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Then   ]76,5;95,3[
~ )( Б  with probability 95,00 P . 

Statistical estimates constructed using the maximum likelihood method are:  

  84,32,3
5

6
,...,,max

1ˆ
521 


 xxx

n

n
МLM   ;  ]69,6;22,3[ˆ МLM   with probability 

95,00 P .  Note that the above estimate МLM̂   was corrected for unbiasedness. 

 

Task 3a. Suppose that we have the following information about the analyzed data: 

(a) The statistical data is distributed normally with an unknown average value   and known 

dispersion 28,02

0  ;  

(b) There are measurement results of 10n  randomly selected values of the measured parameter 

y  (see Table 2). 

 

Table 2. Statistical data. 

i 
1 2 3 4 5 6 7 8 9 10 

Xi 0,54 1,20 0,36 0,80 0,42 2,10 0,70 0,25 0.90 0,48 

 

(c)  Let from  history and from results of previous measurements it is known that the a priori 

values of the mean 60,00 E  and dispersion 03,02

0 D . It is required, using the 

conjugate a priori distribution of the parameter, to obtain Bayesian point and interval (with 

confidence level 95,0P ) estimates of the average value of a random variable and compare them 
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with the corresponding estimates obtained by MLM. 

 

Task 3b. In the conditions of Task 3a we assume that the a priori value of the variance 
2

0  (accuracy 

parameter 
2

0/1 р ) is unknown. It is required, using the conjugate a priori distribution of the 

parameters  and h , to obtain a Bayesian point estimate and construct the corresponding 

confidence (with a confidence level 95,0P ) estimates of the average value and standard 

deviation of the quantity and compare them with the corresponding estimates of the MLM. Also 

build two-dimensional confidence areas corresponding to confidence levels 95,0),( hP    and 

98,0),( hP .  

Table 3 shows the point estimates and confidence intervals based on the Bayesian approach and 

the MLM. 

 

Table 3. Comparison of the Bayesian approach and the maximum likelihood method 

 

 Bayesian approach Maximum likelihood method 

 Average value Dispersion Average value Dispersion 

Ex

a

m

pl

e 

№ 

The 

mathe

matic

al 

expec

tation 

of the 

avera

ge 

value 

Confidence 

Interval of the 

average value 

The 

mathema

tical 

expectati

on of the 

dispersio

n 

Confidence 

Interval of 

dispersion 

The 

mathe

matical 

expecta

tion of 

the 

average 

value 

Confidence 

Interval of the 

average value 

The 

mathe

matical 

expect

ation 

of the 

dispers

ion 

Confidence 

Interval of 

dispersion 

1 0,691 [0,451; 0,931] 0,0145 – 0,775 

 

[0,447; 1,103] 0,03 – 

 

2 0,697 [0,363; 1,187] 0, 14 [0,1; 0,441] 0,775 [0,363; 1,187] 0,297 
[0,088; 0,528] 

 

 

It can be seen that the application of the Bayesian approach allows one to construct more accurate 

and reliable estimates.  Figure 2 shows a general view of gamma - normal distribution law. 
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Figure 2. General view of gamma - normal distribution. 

 

Figure 3 shows confidence areas (in the plane of parameters );( h  - accuracy and average value) 

for confidence probabilities 95,0);( hР    and 975,0);(  hР . It can be seen that the areas are drop-

shaped. These confidence areas are level lines of the function of two variables );( h  by the plane 

const . The values of const   are selected in such a way that the volume of the upper cut-off part 

of the figure that sets the distribution density );( h  is 0,95 and 0,975, respectively. Note that with 

increasing n confidence areas will become more and more similar to ellipses, since the gamma - 

normal distribution will tend to a two-dimensional normal law. We also note that currently in the 

scientific works of other authors the methods for constructing confidence regions which have the 

shapes of ellipses, rectangles, ellipsoids are described and implemented. 

 

 
Figure 3. Confidence area in the plane “average value-accuracy”. 

 

Thus, results of simulation demonstrate that the Bayesian approach made it possible to narrow the 

confidence interval by 1.9 times in comparison with the maximum likelihood method. 

 

4. DISCUSSIONS  

 

Modern innovative projects lead to the need to develop new measurement technical means and 

devices with specified technical, metrological and operational characteristics. The above 

characteristics of a new creating product are detailed in the relevant technical specifications of the 
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development of a new product. Before the introduction of these technical means and devices or 

before the state acceptance of these technical means and devices, a whole test cycle is carried out. 

The goal of testing these devices is to confirm the specified characteristics defined in the technical 

projects. To achieve this goal, the results of testing are carefully analyzed, including processed by 

statistical methods.  

 

The article presents a method for constructing statistical estimates of the distribution parameters of 

random variables for the following laws: Poisson law, exponential law, uniform law, Pareto law 

and normal law. The presented results, cover a fairly wide variety of distribution laws encountered 

in the practice of solving measurement problems, in the practice of solving problems of increasing 

the quality of construction materials and in the practice of working the results of testing of 

measuring devices.  

 

When constructing statistical estimates based on the Bayesian approach, distributions conjugating 

with the observed general statistical set play an important role. The article formulates the necessary 

conditions for the existence of conjugate distributions. An algorithm for calculating the unknown 

parameters of the above distribution laws, as well as an algorithm for calculating the unknown 

parameters of the conjugate distributions are described. 

 

The Bayesian approach can provide significant gains in accuracy with limited sample sizes and 

numbers compared to the traditional maximum likelihood method. This circumstance makes the 

proposed method especially effective in the tasks of evaluating the metrological characteristics of 

measuring complexes and measuring instruments, in the case when repeated repetition of tests 

seems burdensome or impossible. In the case when we are able to increase the volume and number 

of sampling data, both approaches as Bayesian approach as MLM will give ever closer results. 

 

Using a priori information about an unknown parameter (unknown parameters) allows us to 

construct effective statistical estimates. In the examples considered in the paper the Bayesian 

scientific approach allowed us to halve the range of confidence intervals in comparison with the 

classical MLM. 

 

The results obtained in the article can find application in the development of measurement methods, 

in the verification and calibration of measuring instruments, in the development of practical 

methods for identifying systematic errors and so on. 

 

The algorithms and results obtained in the article are aimed at methodological support of the 

problems described above. The algorithms are based on taking account the available statistical data 

together with a priori information about the process or object under study.  

 

The developed method can be used in order to create self-learning and self-tuning systems. For this 

purpose, it is necessary to consistently apply relevant recalculation formulas. 

 

5. CONCLUSION 
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The results of applying the Bayesian approach to the construction of statistical estimates of the 

parameters of the distribution laws that are most often encountered in solving problems of 

metrological support of measuring instruments are described. 

 

The effectiveness of the methods is demonstrated by four examples showing that the range of the 

confidence interval can be reduced by two or more times. 

 

The Bayesian approach presented in this article was realized as the module of the software package 

that was developed by author with using Matlab software. The developed software package allows 

to construct effective statistical parameter estimates for the distribution laws considered in the 

article. 
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