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ABSTRACT 

 

The present paper is an attempt to introduce the closure systems over effect algebras. At first, we 

will define closure systems over effect algebras, and for arbitrary set $ U $ and arbitrary subset S 

of all functions from U to an effect algebra L we will obtain the closure system containing S. 

Then, we will define the base of this closure system, and for arbitrary subset S of all functions 

from U to an effect algebra L we will obtain the base of this closure system. 

 

Keywords: Closure Systems, Closure operator, Effect Algebra, Base. 

 

RESUMEN 

 

El presente artículo es un intento de introducir los sistemas de cierre sobre las álgebras de 

efectos. Primero definiremos sistemas de cierre sobre álgebras de efectos y para el conjunto 

arbitrario $ U $ y el subconjunto arbitrario S de todas las funciones de U a un álgebra de efectos 

L obtendremos el sistema de cierre que contiene S. Luego definiremos la base de este sistema de 

cierre y para un subconjunto arbitrario S de todas las funciones desde U hasta un álgebra de 

efectos L obtendremos la base de este sistema de cierre. 

 

Palabras clave: Sistemas de cierre, Operador de cierre, Álgebra de efectos, Base. 

 

1. INTRODUCTION 

 

Closure systems have an important role in almost all parts of mathematics and computer science, 

specially databases, data analysis and management of data. The first people who introduced the 

concept of closure system were (Abramsky & Jung, 1994), and (Belohlavek, 2001). L closure 

systems (with L being a partially ordered set) are introduced in (Abramsky & Jung, 1994) and 

(Belohlavek, 2001) and (Nola et al., 2002) and (Lu & Wang, 2011) This concept generalizes the 
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ordinary subsets of  U  or equivalently, characteristic functions A : U → {0, 1}   to A : U →L  
that are referred to as  L -sets. The partially ordered set L can have different algebraic structures 

such as Boolean algebra, MV-algebra, BL-algebra or effect algebra Effect algebra was first 

introduced by (Foulis & Bennett, 1994) An effect algebra is a partial algebraic structure, 

originally formulated as an algebraic base for unsharp quantum measurements.  

In this article we try to introduce the concept closure system over effect algebra. 

This paper is organized as following: In section 2, we will present the content that we need in the 

paper. In section 3, we will introduce closure system over effect algebra. In section 4, we will 

introduce bases of a closure system. 

 

 

2. MATERIALS AND METHODS 

 

For research in this article, library studies and a collection of articles and books have been used. 

 

Preliminaries 

Effect algebras are abstract generalizations of the unit interval  [0,1]⊆ ℝ. 

[0,1]⊆ ℝ carries a partial addition: the sum of two elements may or may not lie in the [0,1]⊆ ℝ 
again. Furthermore, it has a minimal and a maximal element, and complements with respect to 

the maximal element. We capture the algebraic structure of [0,1] in the notion of an effect 

algebra 

2.1. Definition  

(Foulis & Bennett, 1994) An effect algebra   L  is  a structure  (L, +, ´, 0, 1) consisting of  a set  L  

with  two special elements  0, 1, unary operation ´ and a partially defined binary operation + on 

 𝐿 × 𝐿  satisfying 

the following conditions for every  𝑥, 𝑦 , 𝑧 ∈  𝐿 

1. Commutativity: if  𝑥 + 𝑦 is defined, then so is  𝑦 + 𝑥, and   𝑥 + 𝑦 =  𝑦 + 𝑥 

2. Associativity: if  𝑥 + 𝑦   and  (𝑥 + 𝑦) + 𝑧  are defined, then so are  𝑦 + 𝑧  and  

𝑥 + (𝑦 + 𝑧), and  (𝑥 + 𝑦) + 𝑧 =  𝑥 + (𝑦 + 𝑧). 
3. Zero: 0+a is always defined and equals a  

4. Orthocomplement:  for each  𝑥 ∈ 𝐿, 𝑥´  is the unique element for which  𝑥 +
 𝑥´ =  1  

5. Zero-one law: if  𝑥 + 1 is defined, then  𝑥 = 0. 

 When  𝑥 + 𝑦  exists, we say that  𝑥  is orthogonal to  y  and will  denote 

this  by   𝑥 ⊥  𝑦. 
  

  On an effect algebra  L  one can define a partial  order  ≤ as 

(O1)            𝑥 ≤ 𝑦 ⟺ ∃ 𝑡 ∈ 𝐿 (𝑥 + 𝑡 = 𝑦) 
 
Below we list a useful set of properties of effect algebras (Foulis & Bennett, 

1994) and (Dvurecenskij & Pulmannova, 2000).   
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2.2. Proposition 

Let  𝐿  be an effect algebra and  𝑎, 𝑏   and  𝑐  be elements of  𝐿:  

 

(P1)    a´´ = a. (1) 

(P2)    1´ = 0,  0´ = 1. (2) 

(P3)    a ⊥ 0 , a + 0 = 1. (3) 
(P4)    a ⊥ 1 ⟺   a = 0. (4) 

(P5)  a + b = 0 ⟺  a = b = 0. (5) 

(P6)  a ⊥ b ⟺  a ≤ b´. (6) 

(P7)  a ≤ b ⟺  b´ ≤ a´. (7) 

(P8)  a + c =  b + c ⇒ a = b. (8) 

(P9)   a + c ≤ b + c ⇒ a ≤ b. (9) 

(P10)   a ≤ b ⇒ a ⊥ (a + b´)´. (10) 

(P11)   a ≤ b ⇒ a ⊥ (a + b´)´ = b. (11) 

(P12)   a + b = c ⟺ a´ = b + c´. (12) 

 

2.3. Lemma  

In (𝑃8) 𝑎𝑛𝑑 ( 𝑃9)  of  the previous proposition,  if    𝑐 ⊥ 𝑎 , 𝑐 ⊥ 𝑏, it can be concluded that 

 

(𝑃8´)   𝑎 = 𝑏 ⇒ 𝑎 + 𝑐 = 𝑏 + 𝑐 (13) 

(𝑃9´)   𝑎 ≤ 𝑏 ⇒ 𝑎 + 𝑐 ≤ 𝑏 + 𝑐 (14) 

 

Proof: 

(𝑃8´)  It is clear. 

(𝑃9´) 𝑆𝑖𝑛𝑐𝑒 𝑎 ≤  𝑏  𝑏𝑦 ( 𝑂1) 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠  𝑡 ∈  𝐿,  

 𝑏 = 𝑎 + 𝑡, 𝑠𝑜  𝑐 + 𝑏 =  𝑐 + 𝑎 + 𝑡 .  𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 , 𝑎 + 𝑐 ≤ 𝑏 + 𝑐. 

A closure system 𝑆 on a set 𝐿  is a set of subsets of 𝐿 containing 𝐿 and any intersection of subsets 

of  𝑆. In the sequel we can see the definition of closure system over effect algebras. 

If  𝑈  is a set and  𝐿  is an effect algebra, then we define   𝐿𝑈   as the set of all functions from  𝑈  

to  𝐿 

An  𝐿 - closure operator in  𝑈  is a function  𝐹: 𝐿𝑈 ⟶  𝐿𝑈  such that for all  𝐴 , 𝐵 ∈  𝐿𝑈    the 
following properties hold 

 𝐴 ⊆ 𝐹(𝐴) 

 If 𝐴 ⊆ 𝐵 then, 𝐹(𝐴) ⊆ 𝐹(𝐵) 

 𝐹(𝐹(𝐴)) = 𝐴 
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3. RESULTS AND DISCUSSION 

 

If   𝐿  be an effect algebra and   𝑈   be a nonempty set. For   𝑆 ⊆ 𝐿𝑈, the closure system which 

containing 𝑆 is 𝑆∞ and  𝑅𝑑𝑢+(. . . 𝑅𝑑𝑢+(𝑅𝑑𝑢⋀(𝑅𝑑𝑢+(𝑆)))) or  

𝑅𝑑𝑢⋀(. . . 𝑅𝑑𝑢⋀(𝑅𝑑𝑢+(𝑅𝑑𝑢⋀(𝑆)))) is a base of  𝑆∞ . 

 

Closure Systems Over Effect Algebras 

3.1. Definition 

If  𝐿  is an effect algebra, 𝑈   is a nonempty set  and  𝑆 ⊆ 𝐿𝑈we call  𝑆 a closure system over  𝐿  
if the following conditions are satisfied: 

 𝑆  is  closed  under  ⋀ − intersections, i.e. if 𝐴𝑖 ∈ 𝑆 ,then  

     ⋀𝐴𝑖 ∈ 𝑆. 

 𝑆 is closed under summations, i.e.  for all  𝐴 ∈  𝑆  and  𝑎 ∈  𝐿, if    𝑎 ⊥ 𝐴 , then  𝑎 + 𝐴 ∈
 𝑆 . 

Here, 𝑎 + 𝐴 , ⋀𝐴𝑖 are defined by 

(𝑎 + 𝐴)(𝑢) = 𝑎 + 𝐴(𝑢),   (⋀𝐴𝑖) = ⋀𝐴𝑖(𝑢). (15) 

 

In which   𝑎 ⊥ 𝐴 means , 𝑎 ⊥ 𝐴(𝑢) for all 𝑢 ∈ 𝑈. 

Obviously, the set  𝐿𝑈  is a closure system (the largest one) and we can easily see that an 
intersection of an arbitrary system of closure systems is a closure system. Hence, it follows 

from classical results (Davey, 2002) that for every set  𝑆 ⊆ 𝐿𝑈   there exists the least closure 

system 𝑆̅ containing 𝑆, namely the intersection of all closure systems that contain 𝑆. 

3.2. Definition  

A base of a closure system   𝑇 ⊆  𝐿𝑈  is a set  𝑆 ⊆   𝐿𝑈 such that 

 𝑆̅ = 𝑇. 

 𝑃̅ ≠ 𝑇, for every 𝑃 ⊆ 𝑆. 
3.3. Definition  

For 𝑆 ⊆ 𝐿𝑈, we put: 

𝑆̂ = {⋀𝐴 ∶  ∅ ≠ 𝐴 ⊆ 𝑆} (16) 

𝑆+ = {𝑎 + 𝐴 ∶ 𝑎 ∈ 𝐿 , 𝐴 ∈ 𝑆, 𝑎 ⊥ 𝐴} (17) 

 

in the unit interval  [0,1] ⊆ ℝ We mean the phrase  
𝑎

𝑏
 for the  rational  number, i.e. 

𝑎

𝑏
∈ ℚ  $ and  

+  is partial addition in  [0,1] ⊆ ℝ  , i.e.  
𝑎

𝑏
+

𝑐

𝑑
  may or  may not lie in the   [0,1]⊆ ℝ  again. In 

the next example  (𝑎, 𝑏 ) or   [𝑎, 𝑏]  means a set of all functions whose values are in the (𝑎, 𝑏) or  

[𝑎, 𝑏], in which (𝑎, 𝑏)   and  [𝑎, 𝑏] are open and closed intervals in ℝ 
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3.4. Example  

consider the unit interval  [0,1] ⊆ ℝ , 𝑈 = {1}  and 

(a) 𝑆1 = {
1

5
,

1

8
,

2

7
} 

Hence 𝑆1̂ = 𝑆1 , 𝑆1+ = [
1

5
, 1] ∪ [

1

8
, 1] ∪ [

2

7
, 1] = [

1

8
, 1] 

(b) 𝑆1 = {
1

10
, (

1

7
,

3

4
) ,

8

9
} 

 

Then 𝑆2̂ = 𝑆2 , 𝑆2+ = 𝑆2̂+=[
1

10
, 1] 

 

It is well known that the closure systems and closure operators are cryptomorphic 1 mathematical 

structures .\\  

the closure operator associated with a closure system defines the closure  of a subset  𝐸 of  𝐿  as 

the least closed set  containing  𝐸  and the closure system  

associated with a closure operator is the family of its fixed points. 

in the next theorem we show that functions  

 (. )̂ , (. )+: 𝒫(𝐿𝑈) ⟶ 𝒫(𝐿𝑈) such that for all 

 𝑆 ⊆  𝐿𝑈 , (. )  ̂ (𝑆) = 𝑆̂, (. )+(𝑆) = 𝑆+ are closure operators. 

3.5. Theorem  

Let  𝐿  be an effect algebra and   𝑈  be a nonempty set, then (. )̂ , (. )+ 

are closure operators on  𝐿𝑈. 

Proof. It is clear that for all   𝑆 ⊆  𝐿𝑈,  𝑆 ⊆  𝑆̂ . 

 Let  𝑆1 ⊆ 𝑆2.  Since for all   𝑇 ⊆  𝑆1, 𝑇 ⊆  𝑆2  , we have 𝑆1̂ ⊆  𝑆2̂. Now consider 𝑆 ̂̂ = {⋀𝑇: 𝑇 ⊆
𝑆̂} 

 (I)Informally a structure Γ on a set 𝐸 can be seen as a set of axioms bearing on mathematical 

objects(operations, maps, families of subsets,..) defined on 𝐸  Let   Γ , 𝛤 ´ be two structures 

defined on 𝐸. They are cryptomorphic if there exist maps between the objects of the two 
structures which transform any assertion true in one of these structures into an assertion true in 

the other one. For instance, the structure of Boolean algebra is cryptomorphic with the structure 

of Boolean ring (Nicoletti et al., 1988), for a more precise formulation. 

 

Since for all  𝑆 ⊆  𝐿𝑈, 𝑆 = 0 + 𝑆. Hence  𝑆 ⊆ 𝑆+  . Now consider  𝑎 + 𝐴 ∈ 𝑆++
 hence  𝑎 ∈  𝑆+,

𝑎 ⊥ 𝑡 , for all  t ∈A . Since   𝐴 ∈  𝑆+ , therefore  𝐴 =  𝑎´ +  𝐴 ´,  which  𝐴 ´ ∈ 𝑆, 𝑎´ ⊥ 𝑡  for all  

𝑡 ∈  𝐴´ . So  𝑎 + 𝐴 =  𝑎 + 𝑎´ + 𝐴´ ∈ 𝑆+ .  

 Now let   𝑆1 ⊆ 𝑆2 , 𝐴 ∈  𝑆1  and   𝑎 + 𝐴 ⊆ 𝑆1+  ⊆ 𝑆2+, so  (. )+  is a closure operator. 
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We may define the direct product of a family of effect algebras as follows Assume that 𝑈 is a 

nonempty set and   𝐿𝑢, 𝑢 ∈ 𝑈  are effect algebras. The direct product of family  { 𝐿𝑢:  𝑢 ∈ 𝑈 }  of 

effect algebras ,  denoted by  ∏ 𝐿𝑢𝑢∈𝑈    is an effect algebra   in  which  partially  binary operation 

 +  and unary operation (−)´ defined pointwise. In the other words ∏ 𝐿𝑢𝑢∈𝑈  is the set of all 

functions  𝑓: 𝑈 ⟶ ⋃ 𝐿𝑢𝑢∈𝑈  such that 𝑓(𝑢) ∈ 𝐿𝑢 for all 𝑢 ∈ 𝑈  with the  partially defined binary  

operation +and the unary operation  (−)´defined by: 

if for all  𝑢 ∈  𝑈, 𝑓(𝑢) ⊥ 𝑔(𝑢), (𝑓 +  𝑔)(𝑢) =  𝑓(𝑢) +  𝑔(𝑢), 𝑓´(𝑢) =  𝑓(𝑢)´ . The least and the 

greatest element of  ∏ 𝐿𝑢𝑢∈𝑈   are the functions  0,1: 𝑈 ⟶  ⋃ 𝐿𝑢𝑢∈𝑈   such that 

0(𝑢) = 0𝐿𝑢, 1(𝑢) = 1𝐿𝑢. 

Order in direct product is pointwise, i.e. ∏ 𝑎𝑢𝑢∈𝑈  ≤ ∏ 𝑏𝑢𝑢∈𝑈  iff 𝑎𝑢 ≤  𝑏𝑢. 

 Since operations in direct product of effect algebras are pointwise, therefore direct product of 

effect algebras is an effect algebra. 

3.6. Proposition  

The direct product of effect algebras is an effect algebra 

Like MV-algebras (Nola et al., 2002) for every effect algebra 𝐿 and nonempty set 𝑈, 𝐿𝑢 is direct 
product of the family  

 { 𝐿𝑢:  𝑢 ∈ 𝑈 }   where 𝐿𝑢 = 𝐿 , for all 𝑢 ∈ 𝑈. 

Based on what has been said, the following examples are subsets of direct product of [0,1] 

The following example shows that in general, even if  𝐿 is a chain  𝑆+̂ ⊈ 𝑆̂+ , 𝑆̂+ ⊈ 𝑆+̂   

In the next example by (
1

1000
 ,

1

20
) we mean a function like  𝑓 from  {0,1}  to [0,1] in which  

𝑓(0) =
1

1000
, 𝑓(1) =  

1

20
 

3.7. Example  

Consider  the  unit  interval  [0, 1] ⊆ ℝ, 

  𝑈 = {0, 1} 

(1) 𝑆1 = {(
1

1000
,

1

20
) , (

1

40
,

1

300
)} 

Obviously (
1

1000
+

1

1000
,

1

1000
+

1

20
) ⋀ (

1

40
,

1

300
) = (

1

1000
+

1

1000
 ,

1

300
) ∈ 𝑆1+

̂  , but (
1

1000
+

1

1000
 ,

1

300
) ∉ 𝑆1̂+. So in general  

 

𝑆1+
̂ ⊈ 𝑆1̂+  

(2) 𝑆2 = {(
1

1000
,

99

100
) , (

9

10
,

1

100
)} 

Therefore 
99

100
+ (

1

1000
,

1

100
) = (

99

100
+

1

1000
, 1) ∈ 𝑆2̂+ . 
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We claim (
99

100
+

1

1000
, 1) ∉ 𝑆2+

̂ , if  (
99

100
+

1

1000
, 1) = (𝑡 +

1

1000
, 𝑡 +

99

100
) ⋀  ( 𝑡´ +

9

10
 , 𝑡´ +

1

100
) = (𝑡 +

1

1000
, 𝑡´ +

1

100
) 

Where 0 ≤ 𝑡´ ≤
1

10
 , which is a contradiction. 

3.8. Lemma  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set,   𝑆 ⊆ 𝐿𝑈 ,  𝑆0̅ = 𝑆  and  𝑆𝑖+1
̅̅ ̅̅ ̅ = 𝑆𝑖̅

̂ ∪
𝑆𝑖̅+ then ⋃𝑆𝑖̅  is  a  closure  system. 

Proof. Let ∈ ⋃𝑆𝑖 . So for some 𝑖,  𝐴 ∈ 𝑆𝑖 . Now we consider  𝑎 ∈ 𝐿  in which, 𝑎 ⊥ 𝐴, then 

𝑎 + 𝐴 ∈ 𝑆𝑖̅+ ⊆ 𝑆𝑖+1
̅̅ ̅̅ ̅ ⊆ ⋃𝑆𝑖̅ .  

Now let {𝐴𝑖: 𝑖 ∈ 𝐼} ⊆ ⋃𝑆𝑖̅ , since 𝑆𝑖̅ ⊆ 𝑆𝑖+1
̅̅ ̅̅ ̅ , there exists  

𝑗  such that {𝐴𝑖: 𝑖 ∈ 𝐼} ⊆ 𝑆𝑗̅. Therefore ⋀𝐴𝑖 ∈ 𝑆𝑗̅
̂ ⊆ 𝑆𝑗+1

̅̅ ̅̅ ̅ ⊆ ⋃𝑆𝑖̅ . 

3.9. Corollary  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set,   𝑆 ⊆ 𝐿𝑈, then 𝑆̅ = ⋃𝑆𝑖̅ where, ,  

𝑆0̅ = 𝑆  and  𝑆𝑖+1
̅̅ ̅̅ ̅ = 𝑆𝑖̅

̂ ∪ 𝑆𝑖̅+. 

Proof.  Since for all  , 𝑆𝑖̅
̂ ⊆ 𝑆̅, 𝑆𝑖̅+ ⊆ 𝑆̅ . Therefore  

 ⋃𝑆𝑖̅ ⊆ 𝑆̅. On the other hand , according to Lemma, because ⋃𝑆𝑖̅  is  a closure system  and    𝑆̅   

is the smallest closure system, therefore 𝑆̅ ⊆ ⋃𝑆𝑖̅. 

3.10. Definition  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set, for each   𝑆 ⊆ 𝐿𝑈  , we define  

𝑆⊕ = {𝑎𝑢 + 𝐴(𝑢): 𝑎𝑢 ∈ 𝐿 , 𝐴 ∈ 𝑆 ,  𝑎𝑢 ⊥ 𝐴(𝑢)} (18) 

 

The next example shows that in general 𝑆+ ≠ 𝑆⊕. 

3.11. Example  

Consider = [0,1], 𝑈 = {0,1} ,  

𝑆 = {(
1

1000
,

99

100
),(

9

10 
,

1

100
)},   so  𝑆+ = {(

1

100
+ 𝑡,

99

100
+ 𝑡) : 0 ≤ 𝑡 ≤

1

100
} ∪ {(

9

10
+ 𝑡,

1

100
+ 𝑡) : 0 ≤

𝑡 ≤
1

10
}. 

 But 𝑆⊕ = {(
1

1000
+ 𝑡,

99

100
+ 𝑡´) : 0 ≤ 𝑡 ≤

999

1000
 , 0 ≤ 𝑡´ ≤

1

100
 } ∪ {(

9

10
+ 𝑡,

1

100
+ 𝑡´) : 0 ≤ 𝑡 ≤

1

10
, 0 ≤ 𝑡´ ≤

99

100
 } 

3.12. Definition  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set  and  𝑆 ⊆ 𝐿𝑈 , we define  
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𝑆∞ = 𝑆̂+
̂

+ 
̂

…

…

 
(19) 

 

3.13. Lemma  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set  and  𝑆 ⊆ 𝐿𝑈, then 𝑆̅ = 𝑆∞. 

Proof.   Since for all  

  𝐴 ⊆ 𝑆∞.   𝐴 ̂, 𝐴+ ⊆ 𝑆∞ , so  𝑆∞ is a closure system . Therefore  𝑆̅ ⊆ 𝑆∞.   Since 𝑆̂ ⊆ 𝑆1 ̅̅̅̅ , 𝑆̂+ ⊆
𝑆2 ̅̅̅̅ , …  we have 𝑆∞ ⊆ 𝑆̅. 

 

3.14. Corollary  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set  and  𝑆 ⊆ 𝐿𝑈, then   

𝑆∞ =  𝑆+̂+
̂

+
 

̂
…

…

 
(20) 

 

Proof.   Since  𝑆+̂+
̂

+
 

̂
…

…

 is  a closure system , 𝑆 ̅ ⊆  𝑆+̂+
̂

+
 

̂
…

…

  , and since 𝑆+ ⊆ 𝑆1 
̅̅ ̅, 𝑆+̂ ⊆

𝑆2 
̅̅ ̅, …, we have  𝑆+̂+

̂
+

 
̂

…

…

⊆ 𝑆 ̅ 

 

(. )̂- Base , (. )+- Base   and (. )̅̅ ̅̅ - Base 

In this section, we are giving some algorithms to construct different bases. First some basic 

concepts are reviewed 

3.15. Definition  

(Belohlavek & Konecny, 2016) Let  𝐿  be an effect algebra and   𝑈   be a nonempty set. For   

𝑆 ⊆ 𝐿𝑈,   (. )̂- base of  𝑆  ̂  is  a set  

𝑆0 ⊆ 𝐿𝑈 such that 

 𝑆0  ̂ = 𝑆  ̂ 
 𝑇  ̂ ≠ 𝑆  ̂   for every 𝑇 ⊂ 𝑆0 

 

Let  𝐿  be an effect algebra and   𝑈  be a nonempty set. For   𝑆 ⊆  𝐿𝑈 we consider the set 

of elements in  𝑆  minimal with respect to (. )̂ , i.e.  

𝑅𝑑𝑢⋀(𝑆) = {𝐴 ∈ 𝑆 ∶ 𝐴 ∉ 𝑆 − {𝐴}̂ }    

The following theorem is a folklore in lattice theory. Note also that the theorem follows from the 

results on bases in domain theory on irreducibility (Abramsky & Jung, 1994) and (Gierz et al., 

2004) and (Mundici, 2007). 
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3.16. Theorem  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set. For every finite  𝑆 ⊆ 𝐿𝑈, 𝑅𝑑𝑢⋀(𝑆) is a 

unique (. )̂- base of  𝑆̂ .  

 

3.17. Definition  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set. Let  𝑅  denote the binary relation on 𝐿𝑈 
defined by 

𝐵1  𝑅 𝐵2   if and only if, for some  𝑎 ∈ 𝐿 , 𝑎 ⊥ 𝐵1 and 𝐵2 = 𝑎 + 𝐵1. 

 

3.18. Lemma  

Let  𝑅  be  defined as above. Then 

1. 𝑅  is reflexive, antisymmetric and transitive 

 

2. 𝐵1  𝑅 𝐵2   implies, 𝐵2+ ⊆ 𝐵1+ . 

 

Proof.  

1. Since   0 + 𝐴 =  𝐴, 𝑅  is reflexive. Now let for some 𝑎 , 𝑎´ ∈ 𝐿  and   𝐵1 , 𝐵2 ∈
𝑆 , 𝑎 + 𝐵1 = 𝐵2 , 𝑎´ + 𝐵2 = 𝐵1  . So for all 𝑢 ∈ 𝑈 , 𝑎 + 𝐵1(𝑢) = 𝐵2 (𝑢), 𝑎´ +
𝐵2 (𝑢) = 𝐵1 (𝑢) . Hence  𝑎 + 𝑎´ = 0 ,  so by  (𝑃5), 𝑎 = 𝑎´ = 0 , therefore  𝑅 is 

antisymmetric.  

Let for some 𝑎 , 𝑎´ ∈ 𝐿   and  𝐵1 , 𝐵2  , 𝐵3 ∈ 𝑆 . 

     𝐵2 = 𝑎 + 𝐵1, 𝐵3 = 𝑎´ +  𝐵2 , so 𝐵3 = 𝑎´ + 𝑎 + 𝐵2. Thus 𝑅  
is transitive. 

2.  Since   𝐵1  𝑅 𝐵2     for some   𝑎 ∈ 𝐿 ,  
  𝐵2 = 𝑎 + 𝐵1. Now consider 𝑎´ + 𝐵2  ∈ 𝐵2+ , clearly 

 𝑎´ + 𝐵2 = 𝑎´ + 𝑎 +  𝐵1 ∈ 𝐵1+ . 

 

3.19. Definition 

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set. For every finite  𝑆 ⊆ 𝐿𝑈 , 𝑅𝑑𝑢+(𝑆) 

denote the set of all minimal elements in  𝑆 with respect to  𝑅  , i.e. 

  𝑅𝑑𝑢+(𝑆) = {𝐵 ∈ 𝑆 ∶  𝐵1 𝑅  𝐵  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐵1 = 𝐵 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐵1 ∈ 𝑆} (21) 

 

3.20. Definition  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set. For   𝑆 ⊆ 𝐿𝑈,   (. )+- base of    𝑆   𝑆+  is  
a set  

𝑆0 ⊆ 𝐿𝑈 such that 

 𝑆0+ = 𝑆+ 
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 𝑇+ ≠ 𝑆+   for every 𝑇 ⊂ 𝑆0 

 

3.21. Theorem  

Let  𝐿  be an effect algebra and   𝑈   be a nonempty set.  For any finite   𝑆 ⊆ 𝐿𝑈,   𝑅𝑑𝑢+(𝑆)  is 
unique  

(. )+- base of  𝑆+  

Proof.  

 We prove at first   (𝑅𝑑𝑢+(𝑆))+ =  𝑆+ . By definition, we have 

(𝑅𝑑𝑢+(𝑆))+ = {𝑎 + 𝐵 ∶  𝑎 ⊥ 𝐵, 𝐵 ∈ 𝑅𝑑𝑢+(𝑆)}. Since  

𝑅𝑑𝑢+(𝑆) ⊆ 𝑆  , (𝑅𝑑𝑢+(𝑆))+ ⊆ 𝑆+ .  Now  let  𝐵 ∈ 𝑆+ . 

 So,  𝐵 = 𝑎1 + 𝐵1  for some 𝐵1 ∈ 𝑆 ,  𝑎1 ∈ 𝐿.  

Since  𝑆  is finite, there exists 𝐵2 ∈ 𝑅𝑑𝑢+(𝑆) such that 

 𝐵2 𝑅  𝐵1 ,i.e.  𝐵1 = 𝑎2 + 𝐵2, for some 𝑎2 ∈ 𝐿. Hence   

𝐵 = 𝑎1 + 𝐵1 = 𝑎1 + (𝑎2 + 𝐵2) = (𝑎1 + 𝑎2) + 𝐵2 ∈ (𝑅𝑑𝑢+(𝑆))+ 

If   𝑅𝑑𝑢+(𝑆) is  redundant,  then there exists 𝐵 ∈  𝑅𝑑𝑢+(𝑆)  such that , 𝐵 ∈ ( 𝑅𝑑𝑢+(𝑆) − {𝐵})+. 

Therefore 𝐵 = 𝑎 + 𝐵1 such that   𝐵1 ≠ 𝐵, which is a contradiction. 

Now let  𝑇  is another (. )+-   base  .  Then since  𝑅𝑑𝑢+(𝑆) ⊆ 𝑆+ = 𝑇+. For each  𝐵 ∈ 𝑅𝑑𝑢+(𝑆) , 
there exists 𝑎1 ∈ 𝐿 , 𝐵1 ∈ 𝑇 such that 𝐵 = 𝑎1 + 𝐵1,i.e. 𝐵1 𝑅 𝐵 . As 𝐵1 ∈ 𝑇 ⊆ 𝑇+ = 𝑆+, there 

exists 𝑎2 ∈ 𝐿 and  𝐵2 ∈ 𝑅𝑑𝑢+(𝑆) such that 𝐵1 = 𝑎2 + 𝐵2 ,i.e. 𝐵2 𝑅 𝐵1 .Due to transitivity of  𝑅 . 

Since 𝐵, 𝐵2 ∈ 𝑅𝑑𝑢+(𝑆) and since 𝐵  is minimal in 𝑆, we obtain 𝐵 = 𝐵2. Observe that by 

previous Lemma we have  𝐵2 ⊆ 𝐵1 ⊆ 𝐵  therefore 𝐵 = 𝐵1 ∈ 𝑇 .  Therefore 𝑅𝑑𝑢+(𝑆) ⊆ 𝑇 . since 

𝑅𝑑𝑢+(𝑆) is a (. )+-   base, we must have because 𝑅𝑑𝑢+(𝑆) = 𝑇 , otherwise 𝑇  is redundant. 

 

3. CONCLUSION 

 

Lemma Let 𝐿  be an effect algebra and  𝑈  be a nonempty set , 𝑆1, 𝑆2, 𝑆3, … ⊆ 𝐿𝑈, if   𝑆1+
= 𝑆2+

,

𝑆2 ̂ = 𝑆3 ̂ , 𝑆3+
= 𝑆4+

, …  

Then 𝑆1̅ = 𝑆2̅ =  𝑆3̅ = 𝑆4̅ = ⋯ 

Proof. By Lemma 3.13 and Corollary 3.14 

𝑆1̅ = 𝑆1∞ =   𝑆1+
̂

+
̂

+
 

̂
…

…

=   𝑆2+
̂

+
̂

+
 

̂
…

…

= 𝑆𝟐
̅̅̅ =  𝑆2 ̂

+ ̂+ 
̂

…

…

=   𝑆3 ̂
+ ̂+ 

̂
…

…

= 𝑆𝟑
̅̅̅ = ⋯ 

(22) 

 

Lemma Let 𝐿  be an effect algebra and  𝑈  be a nonempty set , 𝑆1, 𝑆2, 𝑆3, … ⊆ 𝐿𝑈, if     𝑆1̂ = 

𝑆2̂ , 𝑆2+
= 𝑆3+

, 𝑆3̂ = 𝑆4̂ , … 
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Then, 𝑆1̅ = 𝑆2̅ =  𝑆3̅ = 𝑆4̅ = ⋯ 

Proof.  Similar to the previous Lemma. 

The following result is obtained from Lemma 4.1 

If  𝑆1  is the input system of 𝐿-sets,  we obtain (a smaller ) 𝑆2 with 𝑆1+ = 𝑆2+ and then obtain 

from 𝑆2 some smaller  𝑆3 with 𝑆2 ̂ = 𝑆3 ̂ and we obtain from 𝑆3 some smaller 𝑆4 with 𝑆3+
=

𝑆4+
,... 

then 𝑆1, 𝑆2, 𝑆3, 𝑆4, … generate the same 𝐿 -closure systems. In particular, in view of the preceding 

results, a good choice is to take  𝑅𝑑𝑢+(𝑆), 𝑅𝑑𝑢⋀(𝑆) ,  In this procedure, These considerations 

bring us a way to find the base of 𝑆̅.  

Corollary Let  𝐿  be an effect algebra and   𝑈   be a nonempty set. If   𝑆 ⊆ 𝐿𝑈, then 

𝑅𝑑𝑢+(. . . 𝑅𝑑𝑢+(𝑅𝑑𝑢⋀(𝑅𝑑𝑢+(𝑆)))) or  𝑅𝑑𝑢⋀(. . . 𝑅𝑑𝑢⋀(𝑅𝑑𝑢+(𝑅𝑑𝑢⋀(𝑆)))) is a base of  𝑆̅. 

future work In future work, we are looking for conditions in which 𝑆̅  and bass for 𝑆̅  can be 
operated with finite operations. 
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