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ABSTRACT

The present paper is an attempt to introduce the closure systems over effect algebras. At first, we
will define closure systems over effect algebras, and for arbitrary set $ U $ and arbitrary subset S
of all functions from U to an effect algebra L we will obtain the closure system containing S.
Then, we will define the base of this closure system, and for arbitrary subset S of all functions
from U to an effect algebra L we will obtain the base of this closure system.

Keywords: Closure Systems, Closure operator, Effect Algebra, Base.
RESUMEN

El presente articulo es un intento de introducir los sistemas de cierre sobre las algebras de
efectos. Primero definiremos sistemas de cierre sobre algebras de efectos y para el conjunto
arbitrario $ U $ y el subconjunto arbitrario S de todas las funciones de U a un algebra de efectos
L obtendremos el sistema de cierre que contiene S. Luego definiremos la base de este sistema de
cierre y para un subconjunto arbitrario S de todas las funciones desde U hasta un algebra de
efectos L obtendremos la base de este sistema de cierre.

Palabras clave: Sistemas de cierre, Operador de cierre, Algebra de efectos, Base.

1. INTRODUCTION
Closure systems have an important role in almost all parts of mathematics and computer science,
specially databases, data analysis and management of data. The first people who introduced the
concept of closure system were (Abramsky & Jung, 1994), and (Belohlavek, 2001). L closure

systems (with L being a partially ordered set) are introduced in (Abramsky & Jung, 1994) and
(Belohlavek, 2001) and (Nola et al., 2002) and (Lu & Wang, 2011) This concept generalizes the
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ordinary subsets of U or equivalently, characteristic functions A: U - {0, 1} to A:U —L
that are referred to as L -sets. The partially ordered set L can have different algebraic structures
such as Boolean algebra, MV-algebra, BL-algebra or effect algebra Effect algebra was first
introduced by (Foulis & Bennett, 1994) An effect algebra is a partial algebraic structure,
originally formulated as an algebraic base for unsharp quantum measurements.

In this article we try to introduce the concept closure system over effect algebra.

This paper is organized as following: In section 2, we will present the content that we need in the
paper. In section 3, we will introduce closure system over effect algebra. In section 4, we will
introduce bases of a closure system.

2. MATERIALS AND METHODS

For research in this article, library studies and a collection of articles and books have been used.

Preliminaries
Effect algebras are abstract generalizations of the unit interval [0,1]€ R.

[0,1]< R carries a partial addition: the sum of two elements may or may not lie in the [0,1]€ R
again. Furthermore, it has a minimal and a maximal element, and complements with respect to
the maximal element. We capture the algebraic structure of [0,1] in the notion of an effect
algebra

2.1. Definition

(Foulis & Bennett, 1994) An effect algebra L is astructure (L, +, , 0, 1) consisting of a set L
with two special elements 0, 1, unary operation ~and a partially defined binary operation + on
L x L satisfying

the following conditions for every x,y,z € L

1. Commutativity: if x + y is defined, thensois y+x,and x+y =y +x
2. Associativity: if x +y and (x +y) + z are defined, then so are y +z and
x++z),and (x+y)+z=x+ (y+ 2).
3. Zero: O+a is always defined and equals a
4. Orthocomplement: for each x € L,x" is the unique element for which x +
x'=1
5. Zero-one law: if x + 1 is defined, then x = 0.

When x + y exists, we say that x is orthogonal to y and will denote
this by x L y.

On an effect algebra L one can define a partial order <as
(Op) x<ye3dtelLx+t=y)

Below we list a useful set of properties of effect algebras (Foulis & Bennett,
1994) and (Dvurecenskij & Pulmannova, 2000).
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2.2. Proposition

Let L be aneffectalgebraand a,b and c be elements of L:

(P) a =a. (1)

(P,) 1=00=1. (2)
(P;) al0,a+0=1. 3)
() alle a=0. 4)
(P;) a+b=0 < a=b=0. (5)
(P) alb e a<b. (6)
(P,) a<b & b <a. )
(Pg) a+c=b+c =>a=h. (8)
(Py) a+c<b+c>ac<h. 9)
(P,) a<b=al(a+b). (10)
(P;;) a<b=al(a+b) =b. (11)
(P;) a+b=ce=a =b+c. (12)

2.3. Lemma

In (Pg) and ( Py) of the previous proposition, if ¢ L a,c L b, itcan be concluded that

(Pg) a=b>a+c=b+c (13)
(Py) a<b=>a+c<b+c (14)

Proof:

(Pg") Itis clear.

(Py") Sincea < b by (0,) thereexists t € L,
b=a+t,soc+b=c+a+t. Therefore, a+c<b+c.

A closure system S on a set L is a set of subsets of L containing L and any intersection of subsets
of S. In the sequel we can see the definition of closure system over effect algebras.

If U isasetand L is an effect algebra, then we define LY as the set of all functions from U
to L

An L - closure operator in U is a function F:LUV — LY such that for all A,B € LU the
following properties hold

e ACF(A)
e IfAC Bthen F(A) € F(B)
o F(F(A)=4
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3. RESULTS AND DISCUSSION

If L be an effect algebra and U be a nonempty set. For S < LY, the closure system which
containing S IS Seo and Rdu,(...Rdu,(Rdup(Rdu,(5)))) or
Rdup(...Rdup(Rdu,(Rdu,(S)))) is a base of S, .

Closure Systems Over Effect Algebras
3.1. Definition

If L isan effect algebra, U is a nonempty set and S < LYwe call S a closure system over L
if the following conditions are satisfied:

e S is closed under A — intersections, i.e. if A; € S ,then
NA; € S.

e Sisclosed under summations, i.e. forall A€ S and a€ L,if alA,then a+ A €
S.
Here, a + A, A\A; are defined by

(a+ADW) =a+A@), (A4 =N;wW). (15)

In which a L A means, a L A(u) forall u € U.

Obviously, the set LY is a closure system (the largest one) and we can easily see that an
intersection of an arbitrary system of closure systems is a closure system. Hence, it follows
from classical results (Davey, 2002) that for every set S € LU there exists the least closure
system S containing S, namely the intersection of all closure systems that contain S.

3.2. Definition
A base of a closure system T < LY isaset S € LU such that

o S=T.
e P+#T, foreveryP CS.
3.3. Definition

For S < LY, we put:

S={NM: 0+ACS} (16)
S,={a+A:a€lL,A€S,alA} a7

in the unit interval [0,1] € R We mean the phrase %for the rational number, i.e. % €Q $and
+ is partial addition in [0,]] € R ,i.e. -+~ mayor may notlie in the [0,1]< R again. In

the next example (a,b) or [a,b] means a set of all functions whose values are in the (a, b) or
[a, b], in which (a,b) and [a, b] are open and closed intervals in R
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3.4. Example
consider the unit interval [0,1] € R, U = {1} and
11 2
@ si={33
a 1 1 2 1
Hence $; = Sy, 81, = [, 1| u 5, 1] u |2, 1] = . 1]

1 1 3\ 8
®  5={5(3) 3
~ =~ 1
Then Sz :SZFSZ+ :SZ+:[E,1]
It is well known that the closure systems and closure operators are cryptomorphic * mathematical

structures||.

the closure operator associated with a closure system defines the closure of a subset E of L as
the least closed set containing E and the closure system

associated with a closure operator is the family of its fixed points.

in the next theorem we show that functions

), ()4 PLY) — P(LY) such that for all

Sc LY, () (S) =5, (.).(S) =S, are closure operators.

3.5. Theorem

Let L be an effectalgebraand U be a nonempty set, then (1), (s
are closure operators on LY.

Proof. Itis clear that forall Sc LV, Sc S.

Let S, €S,.Sinceforall TS S;,,T< S, ,wehave S; € S,. Now consider S = {AT:T <
S}

OInformally a structure T on a set E can be seen as a set of axioms bearing on mathematical
objects(operations, maps, families of subsets,..) defined on E Let TI',I’ "be two structures
defined on E. They are cryptomorphic if there exist maps between the objects of the two
structures which transform any assertion true in one of these structures into an assertion true in

the other one. For instance, the structure of Boolean algebra is cryptomorphic with the structure
of Boolean ring (Nicoletti et al., 1988), for a more precise formulation.

Since forall S< LU, S=0+S.Hence S < S, . Now consider a + A €S, hence a € S,,
alt,forall teA.Since A € S, ,therefore A= a + A’, which A"€S,a Lt forall
te AA.Soa+A=a+a +A €S,.

Nowlet S; €5,,A€ Sy and a+AC<SS;, €5,,,50 (.)4 isaclosure operator.
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We may define the direct product of a family of effect algebras as follows Assume that U is a
nonempty setand L., u € U are effect algebras. The direct product of family {L,: u€ U} of
effect algebras, denoted by [],ey L, isan effectalgebra in which partially binary operation
+ and unary operation (=) defined pointwise. In the other words [T,y L, is the set of all
functions f:U — Uyey Ly Such that f(u) € L, for all u € U with the partially defined binary
operation +and the unary operation (—) defined by

ifforall ue U,f(w) Lgw),(f+ g)(w) = f(w)+ g(w), f'(w) = f(u)". The least and the
greatest element of [],cy L, are the functions 0,1: U — U,y L, Such that

0(w) = 0Ly, 1(w) = 1L,,.
Order in direct product is pointwise, i.e. [[ ey ay < [luey by iff ay < by,.

Since operations in direct product of effect algebras are pointwise, therefore direct product of
effect algebras is an effect algebra.

3.6. Proposition
The direct product of effect algebras is an effect algebra

Like MV-algebras (Nola et al., 2002) for every effect algebra L and nonempty set U, L* is direct
product of the family

{LyueU} wherelL, =1L, forallueU.
Based on what has been said, the following examples are subsets of direct product of [0,1]

The following example shows that in general, even if Lisachain S, ¢ $,,S, €5,

In the next example by (m 5) we mean a function like f from {0,1} to [0,1] in which
f(0) = o fF(D) = 55
3.7. Example
Consider the unit interval [0,1] € R,
U =1{01}
1 1 1 1

@ 51 =5m050) (50500

. 1 1 1 1 1 1 1 1
OIbVIOUSIy (1000 + 1000’ 1000 + 5)/\ (E'%) o (m 1000 300) € Sl+ , but (m +
7500 300) ¢ 51+ So in general
S1, £ 51,

() Sz = {(10100 19090) (190 ﬁ)}

Therefore—+( 1) (—-I—— 1)ESA2 .
1000’ 100 100 1000 +
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. 99 1 — . 99 1 1 99 ‘ 9 ¢
We claim (355 + 5555 1) €S2, 1 (355 + Tog0 1) = 4 g £+ g A (8 + 556+
1 1 ’ 1
=)= (t+—,t +—)
100 1000 100

Where 0 <t < % , which is a contradiction.
3.8. Lemma

Let L be an effect algebra and U be a nonempty set, S €LV, S;=S and S, =5, U
5., then US, is a closure system.

Proof. Let € US; . So for_some i, A€S;.Now we consider a € L in which, a L A, then
a+A€S,, €5, cUS,.
Now let {4;:i € I} € US, , since S, € S, , there exists
j suchthat {4;:i € I} € §,. Therefore AA; € SQ] c S € US,.
3.9. Corollary

Let L be an effect algebra and U be a nonempty set, S < LY, then S = US, where, ,
So=Sand Sy, =S US,,.

Proof. Since forall , S, € §, 5,, €S . Therefore

US, € S. On the other hand , according to Lemma, because US, is a closure system and S
is the smallest closure system, therefore S € US,.

3.10. Definition
Let L be an effectalgebraand U be a nonempty set, foreach S < LY |, we define

Se ={ay+Aw):a, €L,A €S, a, L A(w)} (18)

The next example shows that in general S, # Sg.
3.11. Example
Consider = [0,1],U = {0,1},

1 99 9 1 1 99 1 9 1
={(— 2 (=, — ={(— == 0<t<— = — 0 <
§ {(1000' 100)’(10 ! 100)}’ SO Sy {(100 Tt 100 T t) 0=t= 100} u {(10 Tt 100 T t) 0=

1
< —
t—lo}'

Ft) 1 0<t<—= 0<t'<—1}U {(=+t,—+t) : 0<t<
1000 100 10 100

99

1
But S@ = {(m +t, 100

1 ' 99
—,0<t <=}
10 100

3.12. Definition

Let L be an effect algebraand U be a nonempty set and S < LY , we define
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= (19)

3.13. Lemma
Let L be an effectalgebraand U be a nonempty set and S < LY, then § = S,.
Proof. Since for all

ACS S, A,A, €SS, ,50 S, isa closure system . Therefore S<S,. SinceScS;,S, c
S,,.. wehave S, € S.

3.14. Corollary

Let L be an effectalgebraand U be a nonempty set and S < LY, then

(20)

SOO = /S:++

Proof. Since S, is a closure system , S € S, ,and since S, cS,,S.
o g + 1,9+

Sy, ..wehave Sy, €S

()-Base, (.),-Base and (.)- Base

In this section, we are giving some algorithms to construct different bases. First some basic
concepts are reviewed

3.15. Definition

(Belohlavek & Konecny, 2016) Let L be an effect algebra and U be a nonempty set. For
S cLV, ()-baseof S is aset

So € LY such that

[ ] f;:f\
e T #5 foreveryT c S,

Let L be an effect algebraand U be a nonempty set. For S € LU we consider the set

of elements in S minimal with respect to (1) , i.e.

Rdun(S) ={A€S:A¢S—{A})
The following theorem is a folklore in lattice theory. Note also that the theorem follows from the
results on bases in domain theory on irreducibility (Abramsky & Jung, 1994) and (Gierz et al.,
2004) and (Mundici, 2007).
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3.16. Theorem

Let L be an effect algebra and U be a nonempty set. For every finite S < LY, Rdu,(S) is a
unique (.)- base of S .

3.17. Definition

Let L be an effect algebraand U be a nonempty set. Let R denote the binary relation on LY
defined by

B; R B, ifandonlyif, forsome a € L,a L B;and B, = a + B;.

3.18. Lemma
Let R be defined as above. Then

1. R isreflexive, antisymmetric and transitive
2. By RB, implies, B, € B .

Proof.

1. Since 0+ A= A, R is reflexive. Now let for some a,a” €L and B;,B, €
S,a+B;=By,a+B, =B; . So for all ueU,a+B;(u)=B,w),a +
B,(w) =B;(u). Hence a+a" =0, soby (Ps), a=a =0, therefore R is
antisymmetric.

Let forsomea,a” €L and B;,B, ,B;E€S.
B, =a+B;, B3=a"+ B,,50B; =a +a+ B,. ThusR
is transitive.

2. Since B RB, forsome ac€lL,

B, = a + B;. Now consider a’ + B, € B, , clearly

a,+ Bzza,+a+ 31EBl+.

3.19. Definition

Let L be an effect algebra and U be a nonempty set. For every finite S < LY, Rdu,(S)
denote the set of all minimal elements in S with respectto R , i.e.

Rdu,(S) ={B€S: B; R B implies B = B for some B; € S} (21)

3.20. Definition

Let L be an effect algebraand U be a nonempty set. For S < LY, (.),- base of S, is
a set

So € LY such that

[ ] SO+=S+
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o T,#S, foreveryT c S,

3.21. Theorem

Let L be an effect algebra and U be a nonempty set. For any finite S S LY, Rdu,(S) is
unique

(.)4-base of S,

Proof.

We prove at first (Rdu,(S))y = S, . By definition, we have
(Rdu,(8)); ={a+B: a Ll B,B € Rdu,(S)}. Since

Rdu,(S) €S ,(Rdu,(5)); €S, . Now let BE S, .

So, B=a,+ B, forsomeB, €S, a; € L.

Since S is finite, there exists B, € Rdu.(S) such that

B, R By ,i.e. B, = a, + B,, for some a, € L. Hence
B=a,+B,=a,+(a, +B,) =(a; +a,) + B, € (Rdu,(5)),

If Rdu,(S) is redundant, then there exists B € Rdu.,(S) suchthat, B € (Rdu,(S) — {B}),.
Therefore B = a + B, such that B; # B, which is a contradiction.

Now let T isanother (.),- base . Thensince Rdu,(S) €S, =T,.Foreach B € Rdu,(S),
there exists a; € L,B; € T such that B=a; + B,,i.e. BRB . As BT c T, =§,, there
exists a, € L and B, € Rdu,(S) such that B, = a, + B, ,i.e. B, R B, .Due to transitivity of R .
Since B, B, € Rdu,(S) and since B is minimal in S, we obtain B = B,. Observe that by
previous Lemma we have B, € B; € B therefore B = B; € T . Therefore Rdu,(S) < T . since
Rdu,(S)isa (.),- base, we must have because Rdu,(S) = T , otherwise T is redundant.

3. CONCLUSION

Lemma Let L be an effect algebra and U be a nonempty set, S;,S,,S3, ... € LY, if S1, =Sz,
S, =55,85, =S4,

Proof. By Lemma 3.13 and Corollary 3.14

(22)

571:5‘100: 51+++... = :$:§;++... = S344.. 25_3:"‘

S
2
+++

Lemma Let L be an effect algebra and U be a nonempty set , S;,5,,5;5,.. €LV, if § =
SZ iSZ_,_ =Sg+, 53 =S4,...
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Proof. Similar to the previous Lemma.
The following result is obtained from Lemma 4.1

If S; is the input system of L-sets, we obtain (a smaller ) S, with S;, =S, and then obtain
from S, some smaller S; with S, = 55 and we obtain from S; some smaller S, with Sz, =
Sayren

then S;, S5, S3, S4, ... generate the same L -closure systems. In particular, in view of the preceding
results, a good choice is to take Rdu,(S), Rdu,(S) , In this procedure, These considerations
bring us a way to find the base of S.

Corollary Let L be an effect algebra and U be a nonempty set. If S < LY, then
Rdu, (... Rdu, (Rduy(Rdu,(S)))) or Rdu,(... Rdup(Rdu,(Rdu,(S)))) is a base of S.

future work In future work, we are looking for conditions in which § and bass for § can be
operated with finite operations.
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