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ABSTRACT 
 

Dynamic signal control strategies are effective in relieving congestions during nontypical days, such as 

those with high demands, incidents with different attributes, and adverse weather conditions. This 

research recognizes the need to model the impacts of dynamic signal controls for different days 

representing, different demand and incident levels. Methods are identified to calibrate the utilized tools 

for the patterns during different days based on demands and incident conditions utilizing combinations 

of real-world data with different levels of details. A significant challenge addressed in this study is to 

ensure that the mesoscopic simulation-based dynamic traffic assignment (DTA) models produces 

turning movement volumes at signalized intersections with sufficient accuracy for the purpose of the 

analysis. A new model is developed to estimate the drop in capacity at the incident location by 

considering the downstream signal control queue spillback effects. The developed capacity reduction 

models were used to estimate delay due to an urban street incident. The delay was calculated 

as a combination of the delay due to queuing on the incident link and the increase in upstream 

intersection control delays due the reduction in maximum throughputs resulting from queue 

spillback to the upstream intersection The HCS-based method estimated a reduction in delay 

resulting from the new signal timing plan to be around 3,404 vehicle-hours, whereas the 

VISSIM shows that the new signal timing saving in delay is 4,008 vehicle-hours. This confirms 

that the developed method and VISSIM estimation of the benefits are consistent. 
 

Keywords: Impact, Urban , Travel Time,Traffic, Traffic light  

 

 

RESUMEN 

 
Las estrategias de control dinámico de la señal son efectivas para aliviar las congestiones durante los 

días no típicos, como aquellos con altas demandas, incidentes con diferentes atributos y condiciones 

climáticas adversas. Esta investigación reconoce la necesidad de modelar los impactos de los controles 

de señales dinámicas para diferentes días que representan diferentes niveles de demanda e incidentes. 

Los métodos se identifican para calibrar las herramientas utilizadas para los patrones durante diferentes 
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días en función de las demandas y las condiciones del incidente utilizando combinaciones de datos del 

mundo real con diferentes niveles de detalles. Un desafío importante abordado en este estudio es 

garantizar que los modelos de asignación dinámica de tráfico (DTA) basados en simulación mesoscópica 

produzcan volúmenes de movimiento de giro en intersecciones señalizadas con suficiente precisión para 

el propósito del análisis. Se desarrolla un nuevo modelo para estimar la caída de la capacidad en la 

ubicación del incidente considerando los efectos de derrame de la cola de control de señal aguas abajo. 

Los modelos de reducción de capacidad desarrollados se utilizaron para estimar el retraso debido a un 

incidente en una calle urbana. El retraso se calculó como una combinación del retraso debido a las colas 

en el enlace incidente y el aumento de los retrasos en el control de la intersección aguas arriba debido a 

la reducción en los rendimientos máximos resultantes del derrame de la cola a la intersección aguas 

arriba El método basado en HCS estimó una reducción en el retraso resultante del nuevo plan de 

temporización de la señal será de alrededor de 3.404 horas de vehículo, mientras que el VISSIM muestra 

que el nuevo ahorro de temporización de la señal con retraso es de 4.008 horas de vehículo. Esto 

confirma que el método desarrollado y la estimación VISSIM de los beneficios son consistentes. 

 

Palabras clave: Impacto, Urbano, Tiempo de viaje, Tráfico, Semáforo 

 

 

1. INTRODUCCIÓN 
 

Assessing the impacts of incident management strategies on performance measures allows traffic 

management agencies to prioritize their investment in these strategies by supporting better planning for 

operations and operator decisions. There has been an increasing interest in analyzing the impacts of 

incident management performance on urban streets. The reduction of the impacts of incidents by 

applying incident management and signal control strategies is one of the main interests of transportation 

agencies. 

The impacts of incident and incident management on mobility measures have been 

widely investigated for freeway facilities. Four methods have been used by transportation agencies for 

the following: empirical analysis, queuing analysis, shock wave analysis, and simulation modeling. 

Queuing and shockwave analysis methods have been successfully applied to the estimation of incident 

and bottleneck delays on freeway facilities (Zhang et al., 2010; Hong et al., 2013) (Hadi et al., 2007). 

As discussed in the literature review, these methods may not be accurate in terms of estimating delays 

for incidents on signalized urban streets without the consideration of the interactions between traffic 

signal operations and the capacity drop at the incident location. 

Traffic simulation has also been used to estimate incidents and incident management impacts (Gomes 

et al., 2004; Crowe 2009). Such analysis is able to model the interactions between the drops in capacity 

due to incidents and intersection operations. 

However, the use of simulation models can be costly in terms of data collection, model input 

preparation, and calibration, especially when the incident management strategies need to be 

evaluated at the regional levels when the stochastic nature of incident features and locations 

need to be considered in the analysis , and when the incident impact has to be analysed for  a 

long period of time (e.g., one year) , and for real-time operations. 

This article  discusses the development and application of a method to estimate such impacts 

of support of planning for operations and operational processes. This chapter first discusses the 

extension of existing analytical procedures to allow better assessment of the impacts of 

incidents considering the interactions between the reductions in capacity below demands at 

midblock urban street segment locations and upstream and downstream signalized intersection 

operations, as explained in the previous chapter. This chapter also discusses the incorporation 

of the method in a data analytical tool and its use to inform the identification of a special signal 

timing plan to reduce incident impacts as part of a decision support system. 
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interactions between the drops in capacity due to incidents and intersection operations. 

However, the use of simulation models can be costly in terms of data collection, model input 

preparation, and calibration, especially when the incident management strategies need to be 

evaluated at the regional levels when the stochastic nature of incident features and locations need 

to be considered in the analysis , and when the incident impact has to be analysed for  a long period 

of time (e.g., one year) , and for real-time operations. 

This article  discusses the development and application of a method to estimate such impacts of 

support of planning for operations and operational processes. This chapter first discusses the 

extension of existing analytical procedures to allow better assessment of the impacts of incidents 

considering the interactions between the reductions in capacity below demands at midblock urban 

street segment locations and upstream and downstream signalized intersection operations, as 

explained in the previous chapter. This chapter also discusses the incorporation of the method in a 

data analytical tool and its use to inform the identification of a special signal timing plan to reduce 

incident impacts as part of a decision support system. 

 

2. METHODOLOGY 
 

The first step was the data acquisition. Data from multiple sources and agencies was collected and processed 

to develop and calibrate models. Next, acombination of tools were selected for the modeling and analysis 

of this research. After the tool selection, the next step was network preparation for modeling. The network 

geometry was imported, updated, and cleaned to better represent the existing real-world network. Different 

traffic patterns were identified for modeling to represent different demands and congestion levels. Then, the 

traffic network and demand parameters (supply and demand) of the simulation-based DTA models were 

calibrated for different demand levels utilizingreal-world measures such as traffic flow, on each link and on 

each turning movement. The trip matrices were estimated for 15 minutes’ time intervals for input to the 

DTA models. An Origin Destination Matrix Estimation (ODME) process was implemented through three 
levels of calibration. In the first level (the network level), the overall network was calibrated. Since the 

arterial streets are the focus of this study, in the second level, a more detailed calibration of the demands on 

arterial street segments was conducted. In the third level, the demands of the intersections’ turning 

movements were calibrated through a focus calibration on these movements. The next steps in the model 

preparation for modeling was to prepare the microscopic simulation model network. The calibrated model 

was imported from the simulation-based DTA tool to the microscopic tool. The combination of the two 
tools allowed the assessment of the traffic and incident responsive signal control. 

 

3. RESEARCH BACKGROUND  
 

ATDM strategies dynamically control and manage traffic demand, travel demand, and traffic flow of 

transportation facilities (1, 2) (Sheehban et al., 2012; Khazraeian et al., 2015). The Federal Highway 

Administration’s (FHWA) ATDM programs was introduced to support active, integrated and performance-

based solutions to enhance safety, maximize system productivity, and improve individual mobility in multi-

modal surface transportation systems. Examples of ATDM strategies are shown in Table 1 (Mohammed 

Hadi et al., 2016). 

 
Table 1. Examples of ATDM Strategies 

Active Traffic 

Management (ATM) 

Active Demand 

Management (ADM) 

Active Parking 

Management (APM) 

Adaptive Ramp Metering Dynamic Fare reduction Dynamic Overflow 

Transit Parking 

Adaptive Traffic Signal 

Control 

Dynamic HOV/Managed 

Lanes 

Dynamic Parking 

Reservation 
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Dynamic Junction Control Dynamic Pricing Dynamic Wayfinding 

Dynamic Lane Reversal or 

Contraflow Lane Reversal 

Dynamic Ridesharing Dynamic Priced Parking 

Dynamic Lane Use Control Dynamic Routing  

Dynamic Merger Control Dynamic Transit Capacity 

Assignment 

 

Dynamic Shoulder Lanes On-Demand Transit  

Dynamic Speed Limits Predictive Traveler 

Information 

 

Queue Warning Transfer Connection 

Protection 

 

Transit Signal Priority   

 

 

4. RESEARCH FINDINGS 

 
Incident management is a vital part of ATM strategies. Estimating the impact of incidents and incident 

management allows traffic management agencies to determine the need for various incident management 

strategies and technologies to justify the decision to invest in their programs. This research describes a new 

approach to estimate the capacity impacts due to arterial incidents that result from the interaction between 

the drop in capacity below demands at midblock urban street segment locations and upstream and 

downstream signalized intersection operations. This research also describes the development and 

application of a new model that can estimate the impacts of incidents and incident management strategies 

on urban street facilities. The developed method was successfully used to estimate the impact of modifying 

signal timing plans during incidents with consideration of the estimating drop in capacity. 

 

4.1. Estimating Incident Impact on Delay 
This study develops a method to estimate incident delay using a combination of the delay due to queuing 

on the mid-block incident link and the increase in upstream intersections delay due to the reduction of the 

saturation flow rate or maximum throughput resulting from the queue spillback at the upstream intersection. 

The first component was calculated using deterministic queueing analysis equations, as is used in estimating 

incident delays on freeways. This method estimates the total delays based on incident duration, mean arrival 

rate (demand), and mean capacity under incident condition. The total delay due to lane blockage is 

calculated, as follows: (May, 2016). 

TD= ( tR)( tQ)(λ-μR)/2 

tq= ( tR)(μ-μR)/ (μ-λ) 

TD = total delay, 

tQ = average time in queue, 

μ = mean capacity under normal conditions, 

μR = mean capacity under incident conditions, 

λ = mean arrival rate, and 

tR = average incident duration. 
The increase in the upstream intersection delay is calculated using the signalized intersection control delay 

method presented in the 2010 version of the Highway Capacity Manual (HCM 2010) (TRB Manual, 2010). 

The method calculates control delay as the sum of three components: uniform, incremental, and initial queue 

delays. An important parameter for calculating delay using this method is the capacity of the assessed lane 

group, which is normally calculated as the multiplication of the saturation flow rate and the effective green 

time divided by cycle length. To account for the spillback from the incident location, this study estimates 

upstream intersection capacity utilizing regression models as a function of incident attributes, volume-to-

capacity ratio at the incident location, and upstream signal timing, as described in the next section. 
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4.2. Capacity of Urban Street Segments 
As mentioned earlier, the saturation flow adjustment factor is a function of the number of lanes, number of 

lanes blocked by the incident, and coefficients related to incident severity. However, the adjustment factor 

does not address incident locations other than at the stop line. These incidents are expected to impact the 

signal operations. An incident occurring at a mid-block location can decrease the throughput of the incident 

link. If the queue from the incident spills back to the upstream link, it will decrease the upstream intersection 

throughput and consequently, the operations. 

the reduction in the upstream intersection throughputs in the analysis period, which is a function of how far 

the incident is from the upstream intersection, the volume to capacity (v/Ic) ratio at the incident location, 

the incident 

duration, and the upstream intersection signal timing. The capacity at the incident location (Ic) is also 

affected by downstream intersection parameters, including how far the incident is from the downstream 

intersection, and also discusses the green to cycle-length (g/C) ratio and number of total and blocked lanes. 

Therefore, the developed regression models estimate upstream and downstream link capacities during 

incidents based on incident characteristics, upstream signal operations, and downstream signal operations. 

The first model estimates the lane-blockage capacity at the incident location with consideration of the 

impacts of the downstream signal queue spill back at different incident locations from the downstream 

signal. The second model estimates the reduction in the upstream intersection throughput due to incidents 

at different downstream locations. Both models can be used together to estimate capacities during incident 

conditions that can be used as inputs to the analytical delay equations described in the previous section. The 

developed models to estimate downstream (incident) link capacity and upstream intersection throughput are 

summarized and shown in Table 1. 

 

Table 1 Regression Models to Estimate Interaction Between the Drop in Capacity due to 

Incidents and Upstream and Downstream Signal Operations 

 

Number of 

Lane Blockage 

Downstream 

Signal g/C 

Upstream Incident Capacity R2 

One Lane 

Blockage 

0.67 

0.55 

IC = 0.624x + 532 

 IC = 0.5922x + 646.23 

0.921 

0.902 

Two Lane 

Blockage 

0.67 

0.55 

IC= 6E-07x3 - 0.0015x2 + 1.1292x + 192.34 

IC = 4E-07x3 - 0.0011x2 + 0.839x + 212.18 

0.891 

0.908 

Incident 

Duration 

v/Ic at Incident 

Location 

Intersection Maximum Throughput R2 

 1.13 SF = 0.4765x1 + 1023.6 0.822 

15 

Minutes 

1.15 SF = 0.3217 x1+ 1087.7 0.816 

 1.50 SF = 0.3254 x1 + 854.31 0.793 

 1.13 SF = 0.4512 x1 + 1013.7 0.744 

35 

Minutes 

1.15 SF = 0.3112 x1 + 998 0.794 

 1,50 SF = 0.2342 x1 + 843.35 0.789 

 1.13 SF = 0.4179 x1 + 1002.4 0.765 

45 

Minutes 

1.15 SF = 0.3112 x1 + 892.88 0.654 

 1.50 SF = 0.1998x + 897.82 0.637 
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4.3. Arterial Delay Estimation Accuracy Assessment Results 
In the developed model, incident delays were estimated as the sum of the incident link delays based on the 

queuing equations and the increase in upstream control delay due to spillback with consideration of the drop 

in saturation flow rates due to the incident according to the developed regression models in Table 7-1. The 

Highway Capacity Software (HCS) was used for the calculation of the control delay with the adjusted 

saturation flow rates as shown in Table 1. The resulting arterial incident delay was evaluated by comparing 

the results with incident delays estimated using VISSIM. The VISSIM model accounts for the effects of the 

interactions between upstream and downstream signal operations and midblock incident capacity drops 

since it models the queue spillbacks between different segments in the network. The scenario used in this 

comparison involves a midblock incident that results in a demand to capacity ratio of 1.13 at the incident 

location. Incidents at different locations were modeled in VISSIM (calibration of the VISSIM network 

explained in the previous chapter), and the additional delays due to the incidents were extracted based on 

the average of ten runs for the noincident conditions and ten runs for the incident conditions. 

The network coded in the HCS was matched with the VISSIM network to provide a valid 

comparison. The calibrated VISSIM model with no incidents produced a saturation flow rate of 

1799veh/hr/lane, which was used as the input saturation flow rate in the HCS analysis. The base 

analysis period in the HCM, and thus HCS analysis, is fixed at 15 minutes. The simulated incident 

duration in this study is 35 minutes. Therefore, during the incident condition, the saturation flow 

rates within the first two periods (30 minutes) were calculated based on the regression equations 

presented in Table 1. For the third period (between 30 and 45 minutes), after the incident 

occurrence, in  order to account for the additional 5 minutes of the incident duration, the saturation 

flow was calculated as a weighted average of the saturation rate during the incident in the first 5 

minutes of the period and the no-incident saturation flow rate during the last 10 minutes of the 

period. This accounted for the full 35-minute period of the incident. The incident delays in the HCS 

and VISSIM were calculated as the difference between the delay with incident and without 

incident. A comparison was also made of the estimation of the incident delay using the queuing 

equation by itself to determine the delay at the midblock incident location, as has been used for 

freeway incidents. The incident delay comparison results are shown in Figure 1. 

Figure 1 shows that the incident delay decreased by moving the incident from the upstream signal 

toward the downstream, which is expected due to the reduction in the impact on the upstream 

intersection throughputs due to queue spillbacks. The results show that the use of the combination 

of deterministic queuing and the HCM equations procedure with the modified saturation flow of 

Table 1 to calculate incident delays produced results that are closer to the delays estimated by the 

microsimulation models, compared to the results obtained based on the deterministic queuing 

procedure by itself. This is particularly true for incidents located at closer distances (up to 120-

150m) from the upstream intersection for the v/Ic ratio of this scenario, which is 1.13. Beyond this 

point, the VISSIM simulation shows higher impacts oincidents on the delay of the upstream 

intersection,compared to the HCM procedure, even with the modified saturation flow rates. 
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This may be due to the stochastic nature of VISSIM, which better reflects the randomness of traffic 

arrivals and dissipations. The HCM procedures do notfully accountfor this randomness, and thus it 

may underestimate the impacts under certain conditions. 
 

 

4.5. Assessing the impacts of downstream signal on upstream incident capacity 

 

Based on the simulation results for one lane blockage, the upstream incident capacity was not found 

to be affected by the downstream intersection when the incidents occur at 400.m and 433.m. from 

the downstream signal and when the g/C ratio at the downstream signal equals 0.67 and 0.55, 

respectively. These values were selected for use in the analysis based on typical g/C ratios for the 

main street in the analysis area. Reducing the g/C ratio to a level that constrains the departing 

volumes from the upstream link is expected to reduce the traffic volume arriving at the downstream 

incident location, and this may reduce the portion of unconstrained green. For the two-lane 

blockage incident, the capacity at the incident location was not affected significantly by the 

downstream intersection when the incident occurs at 75m. or more from the downstream signal. 

This distance is the same for both g/C ratios (0.55 and 0.67). 

The data presented was used to develop regression models to estimate the incident capacity (IC) 

based on the investigated influencing factors. The developed regression models are presented in 

Table 2. The developed regression models show that there is a significant relationship between the 

incident capacity and the three independent variables, mentioned earlier, as indicated by the 

Coefficient of Determination (R-Squared) values and the t-test of the significance of the 

independent variable coefficients. If the g/C ratio for an assessed condition is between the two g/C 

ratios assessed in this study, as displayed in Table2, interpolation can be used to estimate the 

capacity. 
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Table 2. Upstream interrupted incident capacity regression models 

 

Number of 

Lane Blockage 

Downstream 

Signal g/C 

Upstream Incident Capacity R2 

One Lane 

Blockage 

0.67 

0.55 

IC = 0.624x + 532 

 IC = 0.5922x + 646.23 

0.921 

0.902 

Two Lane 

Blockage 

0.67 

0.55 

IC= 6E-07x3 - 0.0015x2 + 1.1292x + 192.34 

IC = 4E-07x3 - 0.0011x2 + 0.839x + 212.18 

0.891 

0.908 

Incident 

Duration 

v/Ic at Incident 

Location 

Intersection Maximum Throughput R2 

 1.13 SF = 0.4765x1 + 1023.6 0.822 

15 

Minutes 

1.15 SF = 0.3217 x1+ 1087.7 0.816 

 1.50 SF = 0.3254 x1 + 854.31 0.793 

 1.13 SF = 0.4512 x1 + 1013.7 0.744 

35 

Minutes 

1.15 SF = 0.3112 x1 + 998 0.794 

 1,50 SF = 0.2342 x1 + 843.35 0.789 

 1.13 SF = 0.4179 x1 + 1002.4 0.765 

45 

Minutes 

1.15 SF = 0.3112 x1 + 892.88 0.654 

 1.50 SF = 0.1998x + 897.82 0.637 

 

4.6. Model Utilization for Decision Support 

 

As stated earlier, transportation agencies are interested in assessing the impacts of various strategies 

to reduce incident impacts on signalized urban arterials, including the application of special signal 

plans during incidents. Currently, this can only be achieved by utilizing simulation models that 

consider the interaction between the operations at the incident location and upstream and 

downstream signals. The model developed in this study can be used to support analytical 

assessments of such strategies by incorporating the impacts of such interactions. 

Recognizing the need discussed above, the method developed in this study has been implemented 

in a web-based data analytics tool, referred to as the ITS Data Capture and Performance 

Management tool, which was developed for the Tehran of Transportation by a research team. ITS 

is a data analytics tool that has a number of modules for utilizing real-time and archived data to 

support agency operations. The implemented method in ITS allows the user to better estimate of 

the impacts of incidents on urban arterials and potential strategies such as incident management 

activities that reduce the lane blockage duration and the implementation of a signal timing plan in 

response to incident conditions. To illustrate the utilization of the ITS implementation, the 

methodology was applied to a real-world case study of an incident that occurred at west tirandaz  

and east resalat interchange. The incident location was 0.1 mile from the upstream signal and 0.25 

mile from the downstream signal. The event started at 8:00 a.m. and ended at 9:00 a.m., with a total 

incident. The v/Ic ratio at the incident location was 1.44, resulting in a queue spillback to the 

upstream signal and capacity constraints at the intersection during portions of the green times of 

the feeder links to the incident link. This case study demonstrates the use of the developed delay 

estimation methodology to decide on a special signal timing plan to reduce the spillback impacts. 
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To reduce the spillback impacts, the special signal timing plan can be developed by: 1) increasing 

the green time at the downstream intersection to eliminate backup from the downstream 

intersection to the incident location, which can further reduce the available capacity at the incident 

location, and 2) the upstream intersection green and cycle length should be modified to limit the 

amount of traffic leaving the upstream in each cycle to a level that does not cause spillbacks that 

constrain the amount of traffic that can leave the upstream stop line in a cycle. However, it was 

determined from the case study incident that the downstream intersection effective green to 

capacity (g/C) ratio is 0.65, and the incident occurred 0.25 mile from the downstream signal. 

Applying the downstream intersection models in Table 1 indicates that for such parameters, there 

is no interaction between the queue length from the downstream signal and the operations at the 

incident condition, and thus the incident capacity is not affected by the queues from the downstream 

intersection. For this reason, no changes are required for downstream signal control timing. 

However, when applying the models in Table 1, the results indicate a reduction in throughput of 

the upstream signal due to the incident. Thus, a special signal plan was designed to eliminate the 

constrained green time, in which traffic from feeder links are blocked by queues from the incident 

link. The adjustment to the signal timing was made based on the upstream intersection throughput 

model developed in this study, and the impacts of the adjusted timing were evaluated using VISSIM 

simulation. Also, VISSIM results were compared with the proposed delay calculation method 

utilizing the HCM procedure implemented in the ITS. The adjustment to the green made in this 

study required an estimation of the unconstrained green time for upstream movements. The 

remaining green will be constrained by the queue spillback. Thus, providing green times equal to 

the unconstrained green will minimize the lost green due to the spillback. The unconstrained green 

time is calculated based on the saturation flow rate provided in Table 2. 

 

 
Table 2. Upstream Signal Maximum Throughput for the Test Scenarios 

 
Time 

Stamp 

(min 

Scenario 1 

Upstream 

Node 

Throughput 

(veh/15min) 

Scenario 2 

Upstream 

Node 

Throughput 

(veh/15min 

Scenario 3 

Upstream 

Node 

Throughput 

(veh/15 min 

Scenario 4 

Upstream 

Node 

Throughput 

(veh/15min) 

Scenario 4 

Incident 

Location 

Throughput 

(veh/15min) 

Scenario 5 

Upstream 

Node 

Throughput 

(veh/15min) 

970 158 158 158 158 158 158 

985 688 688 688 688 688 688 

1000 689 647 500 474 474 427 

1015 688 500 500 474 474 427 

1030 690 500 768 768 746 760 

1045 689 689 877 878 877 878 

1060 688 688 878 877 878 877 

1075 689 689 695 696 688 696 

1090 687 687 675 675 675 675 

1105 688 675 675 676 676 676 

1120 689 689 642 674 675 674 

 

Table 3 shows that both VISSIM and the HCM-based methods developed in this 

study and applied in ITS estimated a reduction in delay due to the updated signal timing during 

incidents. The HCS-based method estimated a reduction in delay resulting from the new signal 

timing plan to be around 3,404 vehicle-hours, whereas the VISSIM shows that the new signal 
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timing saving in delay is 4,008 vehicle-hours. This confirms that the developed method and 

VISSIM estimation of the benefits are consistent. 
 

 

Table 3 Network Delay Saving (Vehicle-hrs) due to Upstream Signal Timing Plan 

Adjustment During the Incident Condition in VISSIM and the Proposed Analytical 

Model 

 

VISSIM Models 

Scenario 
Network Total Delay 

(veh-hrs) 

SignalAdjustmentSavingDelay 

(veh-hrs) 

Incident without 

Signal Adjustment 
10703 

4008 
Incident with 

Signal Adjustment 
6664 

ProposedMethodCombination of Queuing and HCM Equations 

Scenario 

Upstream 

Signal Delay 

(HCM 

Equations) 

(veh-hrs) 

Queuing 

Analysis 

Delay 

(veh-hrs 

Total 

Delay 

(veh-hrs) 

Signal 

Adjustment 

Saving Delay 

(veh-hrs) 

Signal Adjustment 

Saving Delay 

(veh-hrs) 

7008 

 
2678 9726 

3404 

Incident with Signal 

Adjustment 
5325 877 6312 

 

 

5. CONCLUSION 

 

The estimation of incident and incident management strategy impacts on urban street performance 

is important to a successful planning for operations and operations of active transportation 

management strategies. This chapter described the development and application of a new model to 

estimate the impacts of incidents and incident management strategies on urban street facilities. The 

developed capacity reduction models were used to estimate delay due to an urban street incident. 

The delay was calculated as a combination of the delay due to queuing on the incident link and the 

increase in upstream intersection control delays due the reduction in maximum throughputs 

resulting from queue spillback to the upstream intersection. A comparison with microscopic 

simulation modeling results showed that the delay estimated using the combination of the increase 

in control delay based on the reduction in capacity estimated by the developed models and 

deterministic queuing at the incident location produced better results than using the deterministic 

queuing procedure by itself for estimating delays. The developed method was successfully 

incorporated in a data analytic tool to support agency operation decisions and is demonstrated to 

be able to support agency assessment of the effectiveness of incident management and associated 

signal control strategies. The developed method to estimate urban street incident impacts was then 

implemented as part of the multi-resolution modeling to refine the DTA modeling and as an input 

to the highway capacity manual-based modeling of incident and incident responsive management 
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impacts. To supplement the DTA modeling for this purpose, additional regression models were 

developed to estimate diversion due to urban street incidents. These regression models were 

combined with the DTA model to estimate the volumes at the incident location and alternative 

routes. The produced volumes during the incident were then used as inputs to microscopic 

simulation for more detailed analysis and to demonstrate the benefits of special signal plans during 

incident conditions. 
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