
906

Key generation method from fingerprint image based on deep convolutional

neural network model

Método de generación de claves a partir de imagen de huellas dactilares

basado en un modelo de red neural convolucional profunda

Mithak Ibrahim Hashem 1, 2, Kadhim Hasen Kuban2

1 Department of Software, College of Information Technology, University of Babylon, Hilla, Iraq.
2 Department of Computer Science, College of Education for Pure Sciences, University of Thi Qar,

Nasiriyah, 64001, Iraq.

mithaki.sw.hdr@student.uobabylon.edu.iq

(recibido/received: 28-agosto-2023; aceptado/accepted: 15-noviembre-2023)

ABSTRACT

 Biometrics effect our live. Security applications employ biometrics. Biometric encryption is growing.

Encryption requires biometric key creation. Long, random, and unexpected is the key. Information and

communication security research emphasizes long, strong encryption keys. The proposed system uses

fingerprint biometrics to generate a long, random biometric encryption key for symmetric encryption. Pre-

processing removed noise from donor fingerprint images in the dataset. The program then trains an

updateable Tuned VGG-16 convolutional neural network model and tests it on fingerprint images to learn

fundamental fingerprint properties. The convolutional neural netwoprk CNN model retains the final weights

for the second model to extract encryption key features. Transfer learning built a second convolutional

neural network model to retrieve features without relearning. Keeping vector mean for processing. The last

step generates an encryption key based on each person's vector of unique biometric features can be used for

symmetric encryption algorithms to encrypt personal documents on the personal PC or personal cloud. Our

CNN based method uses biometrics to recognize people and create safe and trustworthy encryption keys

with over 99% accuracy in testing. Our 98%-accurate deep ANN classifier exceeds the support vector

machine and random forest classifiers.

Keywords: Biometrics; Fingerprint; CNN Model; Transfer Learning; Key Generation.

RESUMEN

La biometría afecta nuestra vida. Las aplicaciones de seguridad emplean biometría. El cifrado biométrico

está creciendo. El cifrado requiere la creación de una clave biométrica. Largo, aleatorio e inesperado es la

clave. La investigación sobre seguridad de la información y las comunicaciones hace hincapié en claves de

cifrado largas y sólidas. El sistema propuesto utiliza biometría de huellas dactilares para generar una clave

de cifrado biométrica aleatoria larga para el cifrado simétrico. El preprocesamiento eliminó el ruido de las

imágenes de huellas dactilares de los donantes en el conjunto de datos. Luego, el programa entrena un

modelo de red neuronal convolucional Tuned VGG-16 actualizable y lo prueba en imágenes de huellas

dactilares para conocer las propiedades fundamentales de las huellas dactilares. El modelo CNN de red

neuronal convolucional conserva los pesos finales para que el segundo modelo extraiga las características

Vol. 36, No. 06, pp. 906-925/Diciembre 2023

ISSN-E 1995-9516

Universidad Nacional de Ingeniería

COPYRIGHT © (UNI). TODOS LOS DERECHOS RESERVADOS

http://revistas.uni.edu.ni/index.php/Nexo

 https://doi.org/10.5377/nexo.v36i06.17447

mailto:mithaki.sw.hdr@student.uobabylon.edu.iq

907

clave de cifrado. El aprendizaje por transferencia construyó un segundo modelo de red neuronal

convolucional para recuperar características sin volver a aprender. Mantener la media vectorial para el

procesamiento. El último paso genera una clave de cifrado basada en el vector de características biométricas

únicas de cada persona que se puede utilizar para algoritmos de cifrado simétrico para cifrar documentos

personales en la PC personal o en la nube personal. Nuestro método basado en CNN utiliza datos

biométricos para reconocer a las personas y crear claves de cifrado seguras y confiables con más del 99 %

de precisión en las pruebas. Nuestro clasificador ANN profundo con una precisión del 98% supera la

máquina de vectores de soporte y los clasificadores de bosque aleatorios.

Palabras claves: Biometría; Huella dactilar; Modelo CNN; Transferir Aprendizaje; Generación de claves.

1. INTRODUCTION

 Biometrics is the analyzing the properties of human (physical and/or behavioral) to identity in a fast

and reliable manner by using of unique biological properties. Applications that have traditionally made use

of biometrics include military access control, criminal or civil identity, and technological framework. These

days, banking, shopping, and buying things online through a mobile device are all part of the same

transaction. One of the most popular biometrics is a person's fingerprint. It can be specified by a visual

progression of ridges on human fingers as they develop in infancy. Researchers have shown that no two

fingerprints are ever exactly the same (Elhoseny et al., 2018). Identification and verification accuracy are

quality-sensitive. Noise makes fingerprint pictures blurry. Scars, skin flaws, dampness, filth, and uneven

fingerprint reader contact may all contribute. Hence, picture enhancement approaches increase structure and

reduce noise. (Chakravarthy et al., 2017; Schuch et al., 2018). The large intra-class differences (differences

across images of the same finger) and huge inter-class similarities in fingerprint matching create a pattern-

recognition problem (similarity problem). Dry skin, incisions, pressure, rotation, and translation of the

scanners can cause class differences. There are just a few fingerprint patterns—whorl, loop, and arch—but

groups may share them. Fingerprint matching algorithms compare objects, skeletons, phases, or fine details

(Jain et al., 2010). Precise matching algorithms are increasingly used. Local and global minutia-based

matching algorithms exist (Mehmandoust & Shahbahrami, 2011; Peralta et al., 2015).

 Key generation systems use biometrics to generate cryptographic keys. This research examines

key-making processes. Hence, biometric cryptographic key generation alternatives are discussed. (Zaki,

2015), in this study created a fingerprint-based key to secure the system. This method has two parts: The

first is 512 numeric values from EPROM fingerprint data enhanced, binarized, and thinned. With an 8x64

EPROM array, the first three linear shift registers supply the row address, while the second through seventh

registers provide the column address. (Barman et al., 2015) use a mutually cancellable fingerprint template

to generate cryptographic keys in 2015. Key-based steganographic exchanges can safely send cancellable

fingerprint templates. They combine the two templates using concatenation-based feature-level fusion. The

shuffle key randomly shuffles the combined template components to generate a new session key.

Cancellable fingerprint template change provides fingerprint privacy while creating symmetric

cryptography revocable keys.

 (Partheeba & Radha, 2016) created orientation confidence level to assess fingerprint quality

(OCL). If the picture quality is good, Scale Invariant Feature Transform (SIFT) extracts features. Otherwise,

the image is ignored. Cover images may hide the cancelable template. Afterwards, Variable Least

Significant Bit (VLSB) techniques will convey the hidden picture from sender to receiver and back.

(Sanghvi & Mangrulkar, 2023) guarantees key unicity with fingerprints and adds unpredictability with

fingerprint combinations. In this study, the key matrix is generated by extracting minute features from the

sender and recipient's fingerprints using their combined minute detail template. This system has four stages.

Enrolment, Authentication, Key Creation, and Cryptography. (Sarkar & Singh, 2018) offer a method for

creating a 128-bit symmetric key from a cancelable fingerprint template shared by sender and recipient.

This solution avoids key storage and distribution and confirms fingerprint privacy by one-way changing the

908

original template into a cancelable one. No one receives or stores the key. The first method applied to the

data points yielded nullifiable template values for both sender and receiver.

 (Panchal & Samanta, 2018) introduced a novel data safety technique in 2018. This approach

generates a codeword using biometric statistical data. Reed-Solomon encodes random codewords. This

password will create a key later. Before decryption, they check the user's identification using an SVM

Ranking algorithm with no cutoff value. (Abed et al., 2019), a backpropagation neural network is used to

encrypt/decrypt data without storing it using a bio-crypto key created via transparent biometrics. Due to

background noise, transparent biometric modalities like fingerprints, faces, and keystrokes are difficult to

use to create repeatable bio-crypto keys. (Suresh et al., 2020) used points collected at regular intervals,

distances computed using Euclidean geometry, sorted by value, and converted to grayscale sequencing.

Keys from gray codes. To reduce key discrepancy from duplicate fingerprints, the suggested method uses

gray code. This research will focus on selecting minutiae points and adding an error correcting algorithm to

produce a reliable cryptographic key.

 (Wang et al., 2021) used fingerprints with feature distance as biometric keys. By measuring

fingerprint details, they create a unique bio-key. The generation interval method determines and recovers

bio-keys. They use two-layer error correction to protect sent data. (Barzut et al., 2021) presented a biometric

fingerprint cryptosystem using convolutional neural networks and fuzzy commitment for authentication. By

translating them into binary, they created a biometric cryptosystem for key-release systems and fingerprint

matching biometric systems. Secure block-level Bose-Chaudhuri-Hocquenghem (BCH) error correction

codes, immune to statistical-based attacks, reduce biometric data variability. (Wu et al., 2022) proposed a

three-tiered fingerprint bio-key production architecture with a fingerprint biometry preprocessor, an FPBK

stabilizer, and a fuzzy extractor. Deep neural network feature selection and layer-by-layer convolution

projection eliminate fingerprint sample fluctuation in the FPBK Stabilizer. A multilayer convolutional

projection fingerprint bio-key generation model is also created. Generating fingerprint keys from a 100-

person fingerprint library tested the proposed framework. The proposed framework generated high-strength,

stable, and resilient fingerprint bio-keys with a 98.0% accuracy rate (at 1024 bits) and a misrecognition rate

of less than 1.5%.

 (Suresh et al., 2022) proposed generating the key pair using fingerprint biometrics and a password.

They use gray code to turn fingerprint minutiae gaps into a reliable binary string. Experimentally, gray code

encoding reduces discrepancies between bit strings created from two fingerprint occurrences. Thus, the

Reed-Solomon error correction algorithm corrects fingerprint duplicate differences to produce more

consistent output. XORing the fingerprint and password hashes yields a safe seed. The recommended

approach generates two enormous prime numbers from this seed value. These prime numbers produce a

public-private key pair using the RSA key creation procedure. This seed value generates the same key pair

every time.

 As a problem statement, accurate fingerprint image processing relies on the detection of fingerprint

image pixels. Low-quality fingerprint images often lack well defined image structures, making it impossible

to accurately identify characteristics. Large localization errors in the location and orientation of minutiae

pixels may be created, leading to the detection of many false minutiae pixels and the possible disregard of

real minutiae pixels. The variant and unstable nature of fingerprint image due to scanner device or other

source of noises may effect on the fingerprint features detection. The research introduced a framework to

deal with these problems that may effect on best detection and extraction of fingerprint features to generate

unique and reliable key from fingerprint image.

2. PROPOSED SYSTEM

Our proposed system deals with the fingerprints of ordinary people in order to generate encryption

keys based on biometrics. Initially, the fingerprint has to go through a pre-processing stage, which reduces

noise, blur and other problems caused by poor quality. The preprocessing stage also deals with issues such

as alignment, rotation resulting from the individual's handling of the scanner. After the completion of the

first stage (the pre-processing stage), a version of the enhanced fingerprint is entered into the second stage,

909

which is the stage of training the proposed model on the fingerprints of several people and according to their

classes.

After completing the training process and obtaining the desired results, the model is tested and its

efficiency verified. The Tuned VGG-16 model of convolutional neural networks was used for this purpose.

Our proposed system exploits the transferability of learning from one convolutional model to another in

order to distinguish the fingerprint classes according to their distinctive features. An artificial neural network

(ANN) was used to classify each fingerprint according to its class. At this point, the third stage begins where

the encryption key is generated by dealing with vectors generated from the convolutional model during the

learning process. These vectors belong to the fingerprint classes that were trained in the previous stage. A

set of normalization steps performed on vectors to suit the capabilities of generating cryptographic keys in

a secure and reliable manner. After generating a biometric encryption key, the required documents and files

are encrypted with a secure encryption system.

2.1. Components of the Proposed System

 There are four major components of the proposed system:

1. Preprocessing component which performs image enhancement stage and contains sub stages such as

dataset images filtering, normalization, resizing and augmentation.

2. Training and testing component which consists of sub stages such as building the proposed deep

learning model of CNN, training, testing and saving weights for further processing.

3. Transfer learning Component which transfers learning from one model to another by loading the pre-

trained model with the previously saved weights.

4. Feature extraction and mean vector generation component which is responsible for extraction of features

of fingerprint from feature map and then generate the mean vector of each class which led to key

generation stage.

5. Key generation stage.

Figure 1 depicts the block diagram of the components of the system.

Figure 1. Components of the Proposed System

910

2.2. Preprocessing Stage

The first stage in the system is preprocessing which consists of two steps as follows:

2.2.1. Fingerprint Image Normalization

 In order to create a uniform fingerprint image, the pixel intensity levels are normalized to fall within a

predetermined range of grayscale values. The image contrast and brightness are improved by the

normalization process, and scanner device noise is eliminated along with changes in grayscale levels caused

by variances in finger pressure. This procedure is a pixel-by-pixel operation that does not alter fingerprint

structures and simplifies subsequent calculations (Patel et al., 2020). During normalization process, a new

value of pixel intensity is assigned to each pixel in the image. It's a pixel-by-pixel adjustment that doesn't

affect the sharpness of the hills and valleys. As can be seen in the provided equations, the major goal of this

technique is to lessen the range of grayscale values along the ridge and valley (Iwasokun et al., 2012):

𝑁(𝑖, 𝑗) =

{

 𝑀0 + √
𝑣0(𝐼(𝑖,𝑗)−𝑀)

2

𝑉

𝑀0 − √
𝑣0(𝐼(𝑖,𝑗)−𝑀)

2

𝑉

 (1)

Where,

 𝑀 =
1

𝑤 𝑥 ℎ
 ∑ ∑ 𝐼(𝑖, 𝑗)ℎ−1

𝑗=0
𝑤−1
𝑖=0 (2)

 𝑉 =
1

𝑤 𝑥 ℎ
 ∑ ∑ (𝐼(𝑖, 𝑗) − 𝑀)2ℎ−1

𝑗=0
𝑤−1
𝑖=0 (3)

 M and V are the mean and variance of the fingerprint image I (i, j), Mo and Vo are the desired mean and

variance values. Figure 2 depicts the normalization operation on the fingerprint image.

Figure 2. Fingerprint (a) Before Normalization (b) After Normalization

2.2.2. Gabor Image Filtering

 The (WxW) blocks will be filtered using a finely calibrated Gabor filter to increase the contrast of the

ridges. In the spatial domain, an even-symmetric Gabor filter has the shape described by equation (3). Figure

3 shows the output of applying normalization and Gabor filter to the fingerprint image. Before applying the

Gabor filter, the orientation of the (WxW) blocks will be determined based on their position relative to the

center of each pixel. Fingerprint image enhancement is a very important step where all other steps depend

on the accuracy of the results from this step (Karo et al., 2019)

(a) (b)

911

a. Original Fingerprint Image b. Enhanced Fingerprint Image

 Figure 3. Apply Normalization and Gabor Filter on a Fingerprint Image

 Gabor filters are formed from two components, sinusoidal and Gaussian. Through the use of a Gabor

filter, the spatial domain may be linked to the best possible representation of orientation (frequency). In

1946, Gabor discovered the Gabor function, which he first defined in one dimension (t denoting time) before

expanding into two dimensions (space) with the help of the following equations (4-6) (Ahmed et al., 2015;

Karo et al., 2019):

𝐺(𝑥, 𝑦, 𝑓, 𝜃) = 𝐸𝑥𝑝 {
−1

2
 [
𝑥1
2

𝛿𝑥2
+

𝑦1
2

𝛿𝑦2
] } cos(2𝜋𝑓𝑥1) (4)

𝑋1 = 𝑥 𝑠𝑖𝑛 𝜃 + 𝑦 cos 𝜃 (5)

𝑌1 = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 sin 𝜃 (6)

 A fixed distance away from the Gaussian characteristics along the x and y axes is denoted by x and y,

where is the orientation direction, f is the cosine wave frequency, and is the cosine of the angle.

2.3. Training the CNN

 When training a network, the goal is to discover the kernels in the convolutional layers and the weights

in the FC layers that result in the smallest discrepancy between the predictions made by the network and the

ground-truth labels on the training dataset. As the loss function and the gradient descent optimization

algorithm play crucial roles in the back propagation algorithm, it is the most popular approach for training

neural networks. Using a loss function and forward propagation on a training dataset, we may estimate how

well a model will perform with a given combination of kernels and weights; then, using back propagation

and gradient descent, we can adjust these learnable parameters to improve the model's performance. When

training a CNN model, it is important to determine which kernels are most effective for a certain task using

the available training data. In the convolutional layer, the only parameter that is automatically learnt during

training is the kernel. However, the size of the kernels, the number of kernels, the padding, and the stride

are all hyperparameters that must be specified before training can begin as shown in Table 1 (Vojt, 2016).

Table 1. CNN's List of Adjustable Settings

CNN Layers Parameters Hyperparameters

Convolution Kernels Kernel size, number of kernels, stride, padding, activation function.

Pooling Layer None Pooling method, filter size, stride, padding.

FC Layer Weights Number of weights, activation functions.

912

Others Model architecture, optimizer, learning rate, loss function, mini-batch

size, epochs, weight initialization, dataset splitting.

2.4. Transfer Learning Step

 At this stage of implementation, the weights are transferred from the pre-trained model to the second

model to extract the features that will be included in the later stage of validation through the ANN model.

Advantage of the ability is taken to transfer learning from one neural model to another in order to start with

the stage of extracting features from the new dataset instead of starting the process from scratch. This led to

an increase in the accuracy of the learning results, and thus the classification and extraction of features,

which will lead to an increase in the effectiveness of generating a solid key. To create a large-scale model

with a limited data set, one useful technique is transfer learning and fine-tuning. In most cases, building a

deep learning model will need a large quantity of data. However, it is not always simple to collect a large

enough data set for that purpose. As a further caveat, from a training perspective, model creation may

sometimes be a lengthy process. I know it bothers you when a single training session encompasses the whole

day. It is possible to employ a fine-tune technique to address this issue in some domains, such as image

categorization.

2.5. Deep Feature Extraction Stage

 After some pre-processing, the fingerprint image is delivered to the deep feature extractor model,

which is utilized to extract the important features that will be used to classify the fingerprint images where

the extraction of features is a critical stage in the classification of image. The extracted features must be

robust against variations in fingerprint illumination, alignment, rotation, noise, and other challenges. So, the

features that are important for the biometric based key generation system must be extracted, and these

features must contain the information required for discrimination between different persons. The aim of the

features extraction process is to obtain the most important information from the original data (image). In

this study, this aim was achieved by using two CNN, VGG-16 Tune.

 After completing the transfer of the learning weights to the new model type VGG16 and the

completion of the validation process on the new fingerprint, the features are extracted from the last

convolutional layer in the VGG16 model, which stores the distinctive features of each fingerprint image as

a matrix with dimensions (14, 14, 512) of length, width and depth, respectively. If it is assumed that each

class contains 50 fingerprint images that have been trained on, then 50 matrices of the same aforementioned

dimensions will be generated. Each Matrix within any class is converted into a one-dimensional vector to

facilitate future dealing with it. This vector contains 100,352 floating elements whose values are between

zero and one. The median is calculated for all vectors of a particular class to obtain the so-called Mean-of-

Vectors.

913

Algorithm1: VGG 16 Tune Based Feature Extraction

Input: Input images

Output: Feature vector for each image within class

Begin

1. Load input images and create an image dataset.

2. Make image preprocessing step.

3. Split the dataset into 80% training and 20% test data.

4. Load the pre-trained VGG16 Tune model (architecture and weights).

5. Defining the layer from which features are extracted.

6. Defining the layer from which features are extracted.

7. While not end of training images set

 Read an image from training set.

 Extract training features of the fingerprint image from the layer is last convolutional layer in

 (block5_conv3).

 Add extracted feature vector to “TrainingFeatures” vectors.

 End While

8. Save training feature vectors as “TrainingFeatures”.

9. While not end of test images set

Read an image from test set.

Extract test features of the fingerprint image from the layer is last convolutional layer in model

(block5_conv3).

// The extracted features are a vector with (14, 14, 512) = 100,352.

Add extracted feature vector to “TestFeatures” vectors.

End While

10. Save test feature vectors as “TestFeatures”

End

2.6. Key Generation Stage Algorithm

 At this stage, several parameters coming from the previous stages are dealt with, namely: the accuracy

threshold as an output from Deep ANN, the distinguished class number c, in addition to the Mean-of-Vectors

as a magnitude value which is represented by one dimensional vector of (128). All of these parameters enter

into the unique key generation stage. The average vector is dealt with in the form of a matrix to facilitate

the task of mathematical dealing with it, as it is converted to 128 784, and this is what generates 128 rows.

We will need to normalize these vectors by finding their magnetode value. The values generated by 128

element values represent a summary of the mean vectors, which in turn represent the feature map of the

finger image. The key is generated using key derivation functions KDF with SHA256 and salt values.

Algorithm2: Key Generation

Inputs: Fingerprint Image of Specific Class, Load Mean-of-Vectors

Outputs: Generated Key

Begin
1. Load enhanced fingerprint image.

2. Load and Run ANN model.

3. From feature vector of fingerprint image applied to ANN produce predicted class number

c.

4. Load class number c and threshold.

5. By class number load the identical Encrypted Mean-of-Vectors from Encrypted Mean-

of-Vectors Database.

6. Decrypt Mean-of-Vector.

7. Transform Seed Vector SV=100,352 elements to the shape (N,M) of (128,784).

914

8. For I = 1 to 128 do

 Compute the magnitude value for each row as MG(I).

 Next I

9. Store one dimensional vector (128,1) as V.

10. Load key derivation function (V,SHA256,Salt)

11. Generate Key String K.

12. Save Key K for Encryption Stage.

End

3. RESULTS AND DISCUSSION

 The proposed system was executed using a personal computer with the following specifications:

firstly, the hardware by a processor Intel(R) Core(TM) i5- with Microsoft Windows 10 (64 bit). Secondly,

the software tool is by Python implemented on Colab Pro platform produced by Google Cloud.

3.1. Training and Validation

 In our proposed system, we used the Fine Tuning VGG16 model to train the first dataset on

fingerprints. The modular system was trained on ImageNet, but we modified the model to meet the

requirements of our proposed system. The last three layers were trained on the properties of fingerprints

only so that the model is able to deal with fingerprints only in a strong and customized way. It is also

known that the basic figures in human fingerprints are the core of the fingerprint as a global figure and the

ends of the edge and branches as local figures. It is one of the difficult figures in the training process in

terms of that it has similar features among all human fingerprints and depends on its discovery on accurate

details such as location and rotation in determining discriminant. Table 2 shows the model summary:

Table 2. CNN model (VGG-16 Tuned) Summary:

Model Parameters No. of Parameters

Total Number of parameters 14,726,996

Trainable parameters No. 4,730,900

Non-trainable parameters No. 9,996,096

Table 3 describes the result (first ten epochs and last ten epochs) of 100 epochs to train this model.

Table 3. Selected twenty epochs from Model Training Report.

Epoch No# Loss Accuracy Val._Loss Val._Accuracy Learning

Rate

1/100 1.1970 0.7364 2.8133 0.0924 1.0000e-04

2/100 0.1873 0.9929 2.5180 0.1681 1.0000e-04

3/100 0.0793 1.0000 2.2818 0.2773 1.0000e-04

4/100 0.0485 1.0000 2.0474 0.6134 1.0000e-04

5/100 0.0340 1.0000 1.8093 0.8992 1.0000e-04

6/100 0.0268 1.0000 1.5588 0.9748 1.0000e-04

7/100 0.0214 1.0000 1.2995 0.9958 1.0000e-04

8/100 0.0166 1.0000 1.0359 0.9958 1.0000e-04

9/100 0.0142 1.0000 0.7881 1.0000 1.0000e-04

10/100 0.0119 1.0000 0.5674 1.0000 1.0000e-04

.

915

.

.

.

.

.

91/100 9.7264e-05 1.0000 0.0012 1.0000 1.0000e-04

92/100 9.1182e-05 1.0000 0.0010 1.0000 1.0000e-04

93/100 8.7003e-05 1.0000 0.0011 1.0000 1.0000e-04

94/100 8.2568e-05 1.0000 0.0011 1.0000 1.0000e-04

95/100 7.6151e-05 1.0000 0.0011 1.0000 1.0000e-04

96/100 8.4102e-05 1.0000 0.0010 1.0000 1.0000e-04

97/100 7.9641e-05 1.0000 0.0011 1.0000 1.0000e-04

98/100 6.6916e-05 1.0000 0.0010 1.0000 1.0000e-04

99/100 6.6890 1.0000 0.0011 1.0000 1.0000e-04

100/100 6.6448e-05 1.0000 0.0010 1.0000 1.0000e-04

Figure 4 will show the accuracy and loss metrics ongoing through the training and testing process.

 a. Accuracy over 100 Epochs b. Loss over 100 Epochs

Figure 4. Accuracy, Loss after 100 Epochs

Figure 5 shows accuracy, loss, validation accuracy, validation loss and learning rate over epochs.

Figure 5. Accuracy, Loss for training and accuracy, loss for Validation and Learning Rate over epochs

Figure 6 shows training and validation accuracy, training and validation loss in split charts.

916

Figure 6. Accuracy and Loss (for Training and Validation stages) over Epochs in Split Charts

Table 4 shows the precision, recall and F1 measures for this model and it exhibits the accuracy %100.

Table 4. Precision Recall, F1-Score and Accuracy Metrics of Training Model:

Class No# Precision Recall F1-Score

 0 1.00 1.00 1.00

 1 1.00 1.00 1.00

 2 1.00 1.00 1.00

 3 1.00 1.00 1.00

 4 1.00 1.00 1.00

 5 1.00 1.00 1.00

 6 1.00 1.00 1.00

 7 1.00 1.00 1.00

 9 1.00 1.00 1.00

 10 1.00 1.00 1.00

 11 1.00 1.00 1.00

 12 1.00 1.00 1.00

 13 1.00 1.00 1.00

 14 1.00 1.00 1.00

 15 1.00 1.00 1.00

 16 1.00 1.00 1.00

 17 1.00 1.00 1.00

 18 1.00 1.00 1.00

 19 1.00 1.00 1.00

Accuracy 1.00

 Figure 7 depicts the confusion matrix as a classification metrics for this model and it shows the

complete correspondence between true labels and predicted labels. The accuracy is %100 in testing

model.

917

Figure 7. Confusion Matrix (Actual, Predicted) Labels and Accuracy Metrics

3.2. Loading weights to VGG16-fine tuning model

 The stored weights are uploaded to a pre-trained Tune model in order to extract the features that play

a key role in generating the biometric keys. In our proposed model, the convolutional layers are

implemented as usual, and then the figs are extracted from the last convolutional layer of the model

structure. Table 5 shows the model summary through training process.

Table 5. Feature Extractor VGG-16 Tune Model Summary:

Model Parameters No. of Parameters

Total Number of parameters 14,714,688

Trainable parameters No. 14,714,688

Non-trainable parameters No. 0

3.3. Implementation of ANN Classifier

 The ANN classifier plays an important role in determining the extent to which a finger image belongs

to a specific class according to a predefined threshold. Experiments have proven that the ANN classifier

was the best with an accuracy rate of 98%. After classifying the image, its private key is generated from the

stored vector. We proposed a deep ANN sequential model for this purpose. Table 6 depicts the structure of

this deep ANN classifier summary, while Table 7 depicts the accuracy metrics of the deep ANN classifier.

Table 6. Deep ANN Classifier Model Summary.

Model Parameters No. of Parameters

Total Number of parameters 412,117,268

Trainable parameters No. 412,108,564

Non-trainable parameters No. 8,704

918

Table 7. Deep ANN Classifier Recall, Precision and F1-Score Accuracy Metrics

Class No# Precision Recall F1-score

 0 1.00 1.00 1.00

 1 1.00 1.00 1.00

 2 1.00 1.00 1.00

 3 1.00 1.00 1.00

 4 1.00 1.00 1.00

 5 1.00 1.00 1.00

 6 1.00 0.67 0.80

 7 1.00 1.00 1.00

 9 1.00 1.00 1.00

 10 1.00 1.00 1.00

 11 1.00 1.00 1.00

 12 1.00 1.00 1.00

 13 1.00 1.00 1.00

 14 0.75 1.00 0.86

 16 1.00 1.00 1.00

 17 1.00 1.00 1.00

 18 1.00 1.00 1.00

 19 1.00 1.00 1.00

 Accuracy 0.98

Figure 8 depicts the training and validation accuracy and loss.

Figure 8. Accuracy and Loss over Epochs

 The following chart shown in Figure 9 depicts the accuracy (training/validation), loss

(training/validation) and learning rate for this ANN deep sequential model.

919

Figure 9. Accuracy, Loss (for Training and Loss) and Learning Rate over Epochs

 Figure 10 shows the confusion matrix of this deep classifier.

Figure 10. Confusion Matric (Actual, Predicted) Labels and Accuracy Metric

3.4. Performance Evaluation

 To discuss the results, accuracy will be taken then precision/recall and F1-score metrics. Then we

will compare between our deep Artificial Neural Network (ANN) classifier performances with other

classifiers such as Support Vector Machine (SVM) classifier and Random Forest (RF) classifier.

3.4.1. Accuracy

 Starting with accuracy as a criterion for our proposed system, relative to the rest of the systems

published in the past few years, according to their sources. Practical experiments on our proposed model

showed an accuracy of more than % 99. Table 8 shows a comparison of other systems with our proposed

system.

Table 8. Accuracy Metrics of Our Proposed system with Several Recent Approaches

Reference Method ACC %

(Gupta & Gupta, 2015) Singular-point 97.80

(Darlow & Rosman, 2017) Minutiae-and-DL 94.55

(Andono & Supriyanto, 2018) Bag-of-Visual-Words 90

(Saeed et al., 2018a) Statistics of D-SIFT descriptor 97.40

(Saeed et al., 2018b) Modified-HOG descriptor 98.70

(Saeed et al., 2022) DeepFKTNet model 98.89

(Jeon & Rhee, 2017) Ensemble-CNN model 97.2

(Zia et al., 2019) B-DCNNs 95.3

(Nguyen & Nguyen, 2019) CNN (tested on 3 classes of FVC2004) 96.1

(Nahar et al., 2022) Modified-LeNet (tested on FVC2004-

DB1)

99.1

(Wu et al., 2022) MCP-FP model 98

(Ang et al., 2018) CIEC-method > 92

Proposed System CNN and DL method > 99

920

3.4.2. Recall, Precision and F1-Scores Metrics

 Recall, Precision and F1-score metrics can be represented in the following Table 9:

Table 9. Recall, Precision and F1-Score Metrics of our Approach.

 Recall Precision F1-score

Proposed System 1.0 1.0 1.0

3.4.3 ANN, SVM and Random Forest Classifiers Comparisons

 The Table 10 shows the precision, recall and F1-score metrics between our classifier with other

two classifiers. The results shows that our proposed deep learning ANN classifier is higher accuracy.

Table 10. Comparison of Precision, Recall, F1-Score and Accuracy Metrics for Our Proposed Deep ANN Classifier

with Support Vecttor Machine (SVM) and Random Forest (RF) Based Classifiers:

Classifier Precision Recall F1-score Accuracy

Support Vecttor Machine (SVM) 95.0 92.0 92.0 93.0

Random Forest (RF) 95.0 92.0 92.0 93.0

Deep ANN Based Proposed Classifier 99.0 98.0 98.0 98.0

3.5. Case Study of Key Generation

 The vectors generated from the previous stage are dealt with the threshold of each class to find the

vectors mean. The values are normalized and the vector is converted to a binary matrix. Final vector 128

elements to generate the key. The following list is for a report on the number of images in the classes.

All samples in dataset with shape: (20,)

All samples Label shape: (20,)

Original labels are : ['0', '1', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '2', '3', '4', '5', '6', '7', '8', '9']

New labels read are : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Table 11 is for a report on the number of vectors in each class.

Table 11. Number of Vectors in Classes.

Class # No. of Vectors

Class: 0 Contains: 70 Vectors.

Class: 1 Contains: 70 Vectors.

Class: 2 Contains: 70 Vectors.

Class: 3 Contains: 70 Vectors.

Class: 4 Contains: 70 Vectors.

Class: 5 Contains: 70 Vectors.

Class: 6 Contains: 70 Vectors.

Class: 7 Contains: 70 Vectors.

Class: 8 Contains: 75 Vectors.

Class: 9 Contains: 77 Vectors.

Class: 10 Contains: 70 Vectors.

Class: 11 Contains: 70 Vectors.

Class: 12 Contains: 84 Vectors.

921

Class: 13 Contains: 70 Vectors.

Class: 14 Contains: 70 Vectors.

Class: 15 Contains: 84 Vectors.

Class: 16 Contains: 84 Vectors.

Class: 17 Contains: 84 Vectors.

Class: 18 Contains: 70 Vectors.

Class: 19 Contains: 70 Vectors.

The following description is a screenshot of Python results:

(20, 100352)

Vector seed: (100352,)

(20, 128, 784)

Matrix M x N: (128, 784)

(20, 128, 1)

Final Vector V: (128, 1)

key generated shape: (1, 14, 14, 512)

shape of transformed embedding key to 1-D vector is (1, 100352)

shape of normalize 1-D vectors of key is : (1, 100352)

################################

Predicted finger labels is: 1

The predication ratio is: 0.9994696

Original label is: 1

mean_vectors_1D : (20, 100352)

###################################

(20, 128, 784)

(20, 128)

Vector of predicated class: (128,)

###################################

[14.929769 12.263961 14.816275 11.672906 14.803835 11.599381

 14.9679 11.922448 15.212897 14.27953 10.194674 13.842593

 10.609922 14.018163 10.647506 13.734892 10.399862 13.164744

 12.495237 15.164312 12.84347 16.27667 13.136515 16.273499

 12.785971 15.526098 14.75975 12.830288 14.985918 13.176794

 16.889175 13.975275 16.834654 13.602913 15.984798 11.549228

 15.496771 11.472614 16.423452 14.400638 17.438358 17.454704

 13.755843 16.170088 11.482987 15.201067 11.2428465 16.326849

 14.223474 17.214596 14.106871 17.013025 12.856354 14.863074

 11.620988 14.53986 12.622108 16.75001 17.088324 14.03729

 16.78401 13.205618 14.844906 11.462029 14.524599 12.234268

 16.356714 13.688227 16.685543 13.901848 16.316341 12.16767

 14.125783 15.013947 11.87491 16.310966 13.549695 16.606638

 13.763899 16.19522 12.296909 13.829541 12.135776 15.142895

 13.030238 16.281967 13.743974 16.63217 13.395031 15.158247

 13.963714 12.067517 15.054442 12.678177 15.861125 12.952465

 16.230585 12.604585 14.745344 10.294409 15.083842 11.8574505

 16.351986 13.034914 16.044096 16.306314 12.422688 14.843797

 10.636608 14.671333 10.619393 14.62976 10.953194 14.268913

 10.888568 13.95222 10.163493 13.404393 10.961958 15.500435

 12.51335 15.257783 15.471551 12.135666 14.688079 11.45552

 14.473213 12.435441]

922

Key is: '3PO09RAfNA0gG5vyEZqxorBJ4caVYtmff1Q2sD9702c='

3.6. Security analysis

 The experimental results shows a high performance of our proposed system in training, testing,

validation, classification and then key generation based on these previous issues. The high accuracy of our

proposed model, which exceeded 99% in recognizing the fingerprints of the users of the system, produced

high accuracy for generating biometric keys, and this was confirmed by the test results of the proposed

system.

 This section addresses the protection of fingerprint biometrics, password and private key in the context

of proposed approach. Understanding of several attacks reveals that the proposed approach prevents the

compromise of fingerprint biometrics, password and the private key. Arguments in favor of the above claim

are presented in the following subsections.

 Lack of transparency for models based CNN

 Many previous studies support the hypothesis of lack of transparency for models based on

convolutional neural networks. Therefore, storing the model with weight and other parameters does not

leak any useful information to adversaries in order to break the biometric key generation mechanism.

 No storage of generated key

 The suggested approach encrypts private data files using a biometrics based generated key. The

same cryptographic key is gleaned from the biometrics each time. As the created biometric key is being

generated again whenever it is required, there is no need to keep it anywhere.

 Security of fingerprint bio-information

 In the memory, which comprises 100352 vector elements that represents a numerical values of

machine learning model, only the mean-of-vectors M that are produced during the key vector operation

are kept. Since the vector M contains no biometric information, the biometric information is protected

from being compromised in the backend system and from being recorded by a multiplicity attack,

blended substitution attack, or cross-matching attack.

 Exhaustive search attack

 An attacker in this scenario is unaware of the key creation process or any of the supporting data

that is kept in the memory. Attackers need to do a lot of extensive search to uncover the real key. The

total number of probes is proportional to the size of the produced key. If the produced key length is L,

the number of searches an attacker must do is 2L - 1.

 Key Randomness

 The randomization of deep CNN and ANN parameters and vectors support the randomness entropy

of biometric key generation.

923

4. CONCLUSION

Fingerprint key generation framework based on the more stable feature maps extracted by CNN

model has been implemented. Experimental results show that using a pre-trained VGG16 Fine Tune CNN

model with transfer learning technique led to higher accuracy results compared to the old traditional minutia-

based methods. Experimental results show that deep ANN classifier deployment as a classifier within our

proposed model gives an accurate classification result comparing to other classifiers such as SVM and RF

classifiers. Experimental results show that the proposed Fine Tuned VGG16 CNN based model gives high

accuracy to recognize fingerprint even though the low quality of some fingerprint images within dataset.

Experimental results show that distortion in the fingerprint images (i.e. high rates of damaged portions

within fingerprint images) can effect on the feature extraction accuracy of the proposed CNN model.

Generating the biometric key from hidden parameters of CNN model gives a high security to the key

generating mechanism. Security analysis shows that the stored parameters of the CNN model with lack of

transparency nature will give more secrecy and protection to the user biometrical attributes.

REFERENCIAS

Abed, L., Clarke, N., Ghita, B., & Alruban, A. (2019). Securing cloud storage by transparent

biometric cryptography. Innovative Security Solutions for Information Technology and

Communications: 11th International Conference, SecITC 2018, Bucharest, Romania,

November 8–9, 2018, Revised Selected Papers 11, 97–108.

Ahmed, H. H., Kelash, H. M., Tolba, M., & Badwy, M. (2015). Fingerprint image enhancement

based on threshold fast discrete curvelet transform (FDCT) and gabor filters. International

Journal of Computer Applications, 110(3), 33–41.

Andono, P., & Supriyanto, C. (2018). Bag-of-visual-words model for fingerprint classification. Int.

Arab J. Inf. Technol., 15(1), 37–43.

Ang, L.-M., Seng, K. P., Ijemaru, G. K., & Zungeru, A. M. (2018). Deployment of IoV for smart

cities: Applications, architecture, and challenges. IEEE Access, 7, 6473–6492.

Barman, S., Samanta, D., & Chattopadhyay, S. (2015). Fingerprint-based crypto-biometric system

for network security. EURASIP Journal on Information Security, 2015(1), 1–17.

Barzut, S., Milosavljević, M., Adamović, S., Saračević, M., Maček, N., & Gnjatović, M. (2021).

A novel fingerprint biometric cryptosystem based on convolutional neural networks.

Mathematics, 9(7), 730.

Chakravarthy, I., Balaram, V., & Reddy, B. E. (2017). Overview of Fingerprint Image

Enhancement & Minutia Extraction. International Journal of Computer Science and

Information Technologies, 4(1).

Darlow, L. N., & Rosman, B. (2017). Fingerprint minutiae extraction using deep learning. 2017

IEEE International Joint Conference on Biometrics (IJCB), 22–30.

Elhoseny, M., Elkhateb, A., Sahlol, A., & Hassanien, A. E. (2018). Multimodal biometric personal

identification and verification. Advances in Soft Computing and Machine Learning in Image

Processing, 249–276.

Gupta, P., & Gupta, P. (2015). A robust singular point detection algorithm. Applied Soft

Computing, 29, 411–423.

Iwasokun, G. B., Charles, A. O., Kayode, A. B., & Olatubosun, O. (2012). Fingerprint image

enhancement: Segmentation to thinning. International Journal of Advanced Computer

Science and Applications, 3(1).

Jain, A. K., Feng, J., & Nandakumar, K. (2010). Fingerprint matching. Computer, 43(2), 36–44.

924

Jeon, W.-S., & Rhee, S.-Y. (2017). Fingerprint pattern classification using convolution neural

network. International Journal of Fuzzy Logic and Intelligent Systems, 17(3), 170–176.

Karo, N. N. B., Sari, A. Y., Aziza, N., & Putra, H. K. (2019). The enhancement of fingerprint

images using gabor filter. Journal of Physics: Conference Series, 1196(1), 12045.

Mehmandoust, S., & Shahbahrami, A. (2011). A Comparison between Different Fingerprint

Matching Techniques. Digital Information and Communication Technology and Its

Applications: International Conference, DICTAP 2011, Dijon, France, June 21-23, 2011.

Proceedings, Part I, 242–253.

Nahar, P., Chaudhari, N. S., & Tanwani, S. K. (2022). Fingerprint classification system using CNN.

Multimedia Tools and Applications, 81(17), 24515–24527.

Nguyen, H. T., & Nguyen, L. T. (2019). Fingerprints classification through image analysis and

machine learning method. Algorithms, 12(11), 241.

Panchal, G., & Samanta, D. (2018). A novel approach to fingerprint biometric-based cryptographic

key generation and its applications to storage security. Computers & Electrical Engineering,

69, 461–478.

Partheeba, S., & Radha, N. (2016). Fingerprint Bio-Crypto key generation using scale invariant

feature transform (SIFT). International Journal of Computer Applications, 153(8), 35–41.

Patel, M. B., Parikh, S. M., & Patel, A. R. (2020). Global normalization for fingerprint image

enhancement. Computational Vision and Bio-Inspired Computing: ICCVBIC 2019, 1059–

1066.

Peralta, D., Galar, M., Triguero, I., Paternain, D., García, S., Barrenechea, E., Benítez, J. M.,

Bustince, H., & Herrera, F. (2015). A survey on fingerprint minutiae-based local matching for

verification and identification: Taxonomy and experimental evaluation. Information Sciences,

315, 67–87.

Saeed, F., Hussain, M., & Aboalsamh, H. A. (2018a). Classification of live scanned fingerprints

using dense sift based ridge orientation features. 2018 1st International Conference on

Computer Applications & Information Security (ICCAIS), 1–4.

Saeed, F., Hussain, M., & Aboalsamh, H. A. (2018b). Classification of live scanned fingerprints

using histogram of gradient descriptor. 2018 21st Saudi Computer Society National Computer

Conference (NCC), 1–5.

Saeed, F., Hussain, M., & Aboalsamh, H. A. (2022). Automatic fingerprint classification using

deep learning technology (DeepFKTNet). Mathematics, 10(8), 1285.

Sanghvi, S., & Mangrulkar, R. (2023). BITSAT: an efficient approach to modern image

cryptography. International Journal of Computational Science and Engineering, 26(3), 268–

282.

Sarkar, A., & Singh, B. K. (2018). Cryptographic key generation from cancelable fingerprint

templates. 2018 4th International Conference on Recent Advances in Information Technology

(RAIT), 1–6.

Schuch, P., Schulz, S., & Busch, C. (2018). Survey on the impact of fingerprint image

enhancement. IET Biometrics, 7(2), 102–115.

Suresh, K., Pal, R., & Balasundaram, S. R. (2020). Fingerprint based cryptographic key generation.

Intelligent Data Communication Technologies and Internet of Things: ICICI 2019, 704–713.

Suresh, K., Pal, R., & Balasundaram, S. R. (2022). Two-factor-based RSA key generation from

fingerprint biometrics and password for secure communication. Complex & Intelligent

Systems, 8(4), 3247–3261.

Vojt, J. (2016). Deep neural networks and their implementation.

Wang, P., You, L., Hu, G., Hu, L., Jian, Z., & Xing, C. (2021). Biometric key generation based on

925

generated intervals and two-layer error correcting technique. Pattern Recognition, 111,

107733.

Wu, Z., Lv, Z., Kang, J., Ding, W., & Zhang, J. (2022). Fingerprint bio‐key generation based on a

deep neural network. International Journal of Intelligent Systems, 37(7), 4329–4358.

Zaki, H. A. (2015). Cryptographic key Generation Using Fingerprint Biometrics. J. Thi-Qar Sci,

5(2).

Zia, T., Ghafoor, M., Tariq, S. A., & Taj, I. A. (2019). Robust fingerprint classification with

Bayesian convolutional networks. IET Image Processing, 13(8), 1280–1288.

PROFILE OF THE AUTHORS

Mithak I. Hashem is a Lecturer and Faculty Member in the Department of Computer Science, College

of Education for Pure Sciences, University of Thi Qar, Iraq since 2005. He received the B.Sc. degree

with the first honour in Computer Science from University of Thi Qar, Iraq in 2002. He then received

M.Sc. degree from Iraqi Commition for Computers and Informatics, Informatics Instutute for

Postgraduate Studies. He is now a Ph.D. in the College of Information Technology, University of

Babylon, Iraq. His research interests include Artificial Intelligent, Machine Learning, Image Processing

and Information Security. He can be contacted at Email: mithaki.sw.hdr@student.uobabylon.edu.iq or

mithak@utq.edu.iq.

Kadhim H. Kuban is a Professor and Faculty Member at the Department of Computer Science,

University on Thi Qar, Iraq. He received B.Sc. degree in Computer Science from Basra University, Iraq

in 1985, and a M.Sc. in Computer Science from Technology University, Iraq in 1992. He then received

the Napoli University Postgraduate Scholarship from the Itali government in 2006 and completed his

Ph.D. in Computer Science in 2010. His research interests are primarily in the area of Information Security

and E-Learning, where he is the author/co-author of multiple research publications. He can be contacted

at Email: khalibraheemi@utq.edu.iq.

