Red neuronal para el reconocimiento de escritura a mano
DOI:
https://doi.org/10.5377/nexo.v33i02.10798Palabras clave:
red neuronal, reconocimiento de patrones, algoritmos de redes neuronales, precisión, entrenamiento de redes, reentrenamiento de redesResumen
Hoy, en la era digital, el problema del reconocimiento de patrones es muy relevante. En particular, la tarea de reconocimiento de texto es importante en la banca, para la lectura automática de documentos y su control; en sistemas de control de video, por ejemplo, para identificar la matrícula de un automóvil que violó las reglas de tránsito; en los sistemas de seguridad, por ejemplo, para verificar los billetes en un cajero automático y en muchas otras áreas. Se conocen una gran cantidad de métodos para resolver el problema del reconocimiento de patrones, pero la principal ventaja de las redes neuronales sobre otros métodos es su capacidad de aprendizaje. Es esta característica la que hace que las redes neuronales sean atractivas para estudiar. El artículo propone un modelo básico de red neuronal. Se consideran los principales algoritmos y se implementa un modelo de programación en el lenguaje de programación Python. En el curso de la investigación, se revelaron las siguientes deficiencias del modelo básico: baja tasa de aprendizaje (el número de dígitos reconocidos correctamente en las primeras épocas de aprendizaje); reentrenamiento: la red no ha aprendido a generalizar los conocimientos adquiridos; baja probabilidad de reconocimiento: 95,13%. Para resolver las desventajas anteriores, se utilizaron varias técnicas que aumentan la precisión y la velocidad del trabajo, así como también reducen el efecto del reentrenamiento de la red.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Universidad Nacional de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en Nexo Revista Científica están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y conceden a la revista el derecho de la primera publicación bajo la licencia Creative Commons Attribution License https://creativecommons.org/licenses/by/3.0/, que permite a otros compartir el trabajo con un reconocimiento a la autoría de la obra y a la publicación inicial en Nexo Revista Científica.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, en un repositorio institucional o en un libro) con el reconocimiento de su publicación inicial en Nexo Revista Científica.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados.