Simulation of a continuous fluidised bed dryer for shelled corn
DOI:
https://doi.org/10.5377/nexo.v34i03.11863Keywords:
Fluidised bed dryer, Plug-flow, Modelling, Shelled cornAbstract
In this study, a mathematical model to simulate the drying of shelled corn in a continuous plug-flow fluidised bed dryer is presented. Equipment and material models were applied to describe the process. The equipment model was based on the differential equations obtained by applying mass and energy balances to each element of the dryer. In the case of the material model, mass and heat transfer rates in a single isolated particle were considered. Calculation results were verified by comparison with experimental data from the literature. There was a very good agreement between experimental data and simulation. The effects of gas temperature and velocity, particle diameter, dry solid flow and solid temperature on the drying process were investigated. It was found that the changes in gas velocity, dry solids flow and the solid temperature had essentially no effect on the drying process.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Array
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in Nexo Scientific Journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of the first publication under the license Creative Commons Attribution License https://creativecommons.org/licenses/by/3.0/, which allows others to share the work with a recognition of the authorship of the work and the initial publication in Nexo Scientific Journal.
- Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, in an institutional repository or a book), with the recognition of the initial publication in Nexo Scientific Journal.
- Authors are allowed and encouraged to disseminate their works electronically (for example, in institutional repositories or in their own website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.